Building
Serverless
Applications
with Python

By Jalem Raj Rohit

Building Serverless
Applications with Python

Develop fast, scalable, and cost-effective web applications
that are always available

Jalem Raj Rohit

BIRMINGHAM - MUMBAI

Building Serverless Applications with
Python

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Merint Mathew
Acquisition Editor: Sandeep Mishra

Content Development Editor: Rohit Kumar Singh
Technical Editor: Ruvika Rao

Copy Editor: Safis Editing

Project Coordinator: Vaidehi Sawant
Proofreader: Safis Editing

Indexer: Priyanka Dhadke

Graphics: Jason Monteiro

Production Coordinator: Arvindkumar Gupta

First published: April 2018
Production reference: 1190418
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78728-867-6

www.packtpub.com

http://www.packtpub.com

Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

¢ Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author

Jalem Raj Rohit is an IIT Jodhpur graduate with a keen interest in recommender systems,
machine learning, and serverless and distributed systems. Raj currently works as a senior

consultant—data science—and NLP at Episource, before which he worked at Zomato and
Kayako. He contributes to open source projects in Python, Go, and Julia. He also speaks at
tech conferences about serverless engineering and machine learning.

About the reviewer

Sanjeev Jaiswal is a computer graduate from CUSAT with 9 years of industrial experience.
He basically uses Perl, Python, AWS, and GNU/Linux for his day-to-day activities. He is
currently working on projects involving penetration testing, source code review, security
design and implementations in AWS, and cloud security projects.

He is learning DevSecOps and Security Automation currently as well. Sanjeev loves
teaching engineering students and IT professionals. He has been teaching in his leisure
time for the last 8 years.

Special thanks to my wife, Shalini Jaiswal, for her unconditional support, and my friends
Ranjan, Ritesh, Mickey, Shankar, and Santosh for their care and support all the time.
Thanks to the people at Packt for the project and the opportunity to learn good stuff from
skilled professionals through reviewing the project.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com

Table of Contents

Preface 1
Chapter 1: The Serverless Paradigm 5
Understanding serverless architectures 6
Understanding microservices 7
Serverless architectures don't have to be real-time only 9
Pros and cons of serverless 11
Summary 14
Chapter 2: Building a Serverless Application in AWS 15
Triggers in AWS Lambda 16
Lambda functions 21
Functions as containers 22
Configuring functions 24
Testing Lambda functions 34
Versioning Lambda functions 39
Creating deployment packages 44
Summary 49
Chapter 3: Setting Up Serverless Architectures 50
S3 trigger 51
SNS trigger 61
SQS trigger 74
CloudWatch trigger 84
Summary 91
Chapter 4: Deploying Serverless APls 93
APl methods and resources 94
Setting up integration 101
Deploying the Lambda function for APl execution 111
Handling authentication and user controls 118
Summary 126
Chapter 5: Logging and Monitoring 127
Understanding CloudWatch 128
Understanding CloudTrail 138
Lambda’s metrics in CloudWatch 145
Lambda's logs in CloudWatch 155

Logging statements in Lambda 160

Table of Contents

Summary

Chapter 6: Scaling Up Serverless Architectures
Third-party orchestration tools
The creation and termination of servers
Security best practices
Identifying and handling difficulties in scaling
Summary

Chapter 7: Security in AWS Lambda
Understanding AWS Virtual Private Clouds (VPCs)
Understanding subnets in VPCs
Securing Lambda inside private subnets
Controlling access to Lambda functions
Using STS inside Lambda for secure session-based execution
Summary

Chapter 8: Deploying a Lambda Function with SAM
Introduction to SAM
CloudFormation for serverless services
Deploying with SAM
Understanding security in SAM
Summary

Chapter 9: Introduction to Microsoft Azure Functions
Introduction to Microsoft Azure Functions
Creating your first Azure Function
Understanding triggers
Understanding logging and monitoring in Azures Functions
Best practices for writing Azure Functions
Summary

Other Books You May Enjoy

165

166
167
175
182
189
190

192
193
200
206
209
210
210

211
212
215
216
225
230

231
232
235
239
246
250
252

253

Index

256

[ii]

Preface

Serverless engineering is a new domain of engineering that allows developers to write code
and deploy infrastructures without having to worry about maintaining servers. This book
explains the concepts of serverless engineering with Python examples on cloud
architectures.

Who this book is for

This book is for Python developers who would like to learn about serverless architectures in
cloud-based platforms such as Azure and Amazon Web Services (AWS). Python
programming knowledge is assumed.

What this book covers

Chapter 1, The Serverless Paradigm, introduces the reader to the concepts of microservices
and serverless architectures, and provides a clear understanding of the pros and cons.

Chapter 2, Building a Serverless Application in AWS, covers AWS Lambda and explains the
concepts, workings, and the components involved in the tool in detail. It also explains the
nuances involved in security, user controls, and versioning code inside Lambda.

Chapter 3, Setting Up Serverless Architectures, goes into further detail about the various
triggers in AWS Lambda and how they integrate with the functions. The reader will learn
what the event structure of each trigger will look like and how to modify the Lambda
function with respect to the type of trigger used.

Chapter 4, Deploying Serverless APIs, explores the AWS API Gateway and also teaches the
reader how to build efficient, scalable serverless APIs using the API Gateway and Lambda.
It goes on to teach the reader how to improve the API by adding authorization and how to
set up user-level controls such as throttling of requests.

Chapter 5, Logging and Monitoring, presents the concept of logging and monitoring in
serverless applications. This is mostly still an unsolved problem in this domain. This
chapter guides the reader through setting up logging and monitoring in the AWS
environment with Python via custom metrics and logging. This chapter also goes into the
details of best practices when it comes to logging and monitoring Lambda functions in
Python.

Preface

Chapter 6, Scaling Up Serverless Architectures, discusses the practice of scaling up serverless
architectures for large workloads using several third-party tools. This chapter also teaches
the reader how to handle security, logging, and monitoring using the available Python
modules.

Chapter 7, Security in AWS Lambda, teaches readers to deploy secure serverless applications
by leveraging the AWS security features available. This involves having strict controls on
components that the application can access, on the users who can handle or access the
application, and so on. This also involves understanding AWS virtual private clouds and
subnets for an in-depth understanding of the security features and best practices you can
follow in AWS Lambda.

Chapter 8, Deploying a Lambda Function with SAM, looks at how to deploy Lambda
functions as infrastructure as code via the Serverless Application Model, which is a new
way of writing and deploying Lambda functions that makes it easier to integrate with other
Taa$ services, such as CloudFormation.

Chapter 9, Introduction to Microsoft Azure Functions, familiarizes the reader with Microsoft
Azure Functions, and explains how to configure and understand the components of the
tool.

To get the most out of this book

The reader should be comfortable with the Python programming language. So, prior
experience with it is expected. Prior experience with cloud-based systems will also be
helpful.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "It is to be noted that the meta information should always be included for all SAM,
which includes AWSTemplateFormatVersion and Transform. This would

tell CloudFormation that the code you have written is an AWS SAM code and a serverless
application.”

[2]

Preface

A block of code is set as follows:

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"For creating a function, you need to click on the orange Create a function button on the
right."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.comn.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

[31]

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Preface

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub. com.

[4]

https://www.packtpub.com/

The Serverless Paradigm

Most probably, if you are reading this book, you have already heard about the serverless
paradigm and the terms serverless engineering and serverless architecture. Nowadays, the
way developers deploy applications has changed drastically, especially in the domain of
data engineering and web development, thanks to event-based architectural designs, also
called serverless architectures.

It is not uncommon to have idle resources and servers in production idle after the server
workload has finished, or waiting for the next workload to come. This introduces a bit of
redundancy in the infrastructure. What if there was no need for idle resources lying around
when there is no workload? What if resources can be created when necessary and be
destroyed once the work is done?

At the end of this chapter, you will understand how serverless architectures and functions
as a service work, and how you can build them into your existing software infrastructure.
You will also learn what microservices are, and decide whether microservices or serverless
operations are well-suited for your architecture or not. You will also learn how to build
serverless applications with Python on major cloud service providers, such as Amazon Web
Services (AWS) and Microsoft's Azure.

This chapter will cover the following points:

Understanding serverless architectures

Understanding microservices

Serverless architectures don't have to be real-time only
Pros and cons of serverless architectures

The Serverless Paradigm Chapter 1

Understanding serverless architectures

The concept of serverless architectures or serverless engineering revolves entirely around
understanding the concept of functions as a service. The most technical and accurate
definition of serverless computing on the internet is as follows:

"Serverless computing, also known as function as a service (FAAS), is a cloud
computing and code execution model in which the cloud provider fully manages starting
and stopping of a function’s container platform as a service (PaaS).”

Now, let's go into the details of each part of that definition to understand the paradigm of
serverless computing better. We shall start with the term function as a service. It means that
every serverless model has a function that is executed on the cloud. These functions are
nothing but blocks of code, that are executed depending on the trigger that is associated
with the function. This is a complete list of triggers in the AWS Lambda environment:

e Amazon S3

e Amazon DynamoDB

e Amazon Kinesis Streams

¢ Amazon Simple Notification Service

e Amazon Simple Email Service

o Amazon Cognito

e AWS CloudFormation

e Amazon CloudWatch Logs

e Amazon CloudWatch Events

e AWS CodeCommit

e Scheduled Events (powered by Amazon CloudWatch Events)
¢ AWS Config

e Amazon Alexa

e Amazon Lex

e Amazon API Gateway

e Other Event Sources: Invoking a Lambda Function On Demand
¢ Sample Events Published by Event Sources

[6]

The Serverless Paradigm Chapter 1

Now let's understand what manages the starting and stopping of a function. Whenever a
function is triggered via one of these available triggers, the cloud provider launches a
container in which the function executes. Also, after the function is successfully executed
the function has returned something, or if the function has run out of time, the container
gets thatched away or destroyed. The thatching happens so that the container can be reused
in the event of high demand and whenever there is very little time between two triggers.
Now, we come to the next part of the sentence, the function's container. This means that the
functions are launched and executed in containers. This is the standard definition of a
container from Docker, a company that made the concept of containers very popular:

"A container image is a lightweight, stand-alone, executable package of a piece of software
that includes everything needed to run it: code, runtime, system tools, system libraries,
settings.”

This helps in packaging the code, the runtime environment, and so on of the function into a
single deployment package for seamless execution. The deployment package contains the
main code file for the function, all the non-standard libraries which are required for the
function to execute. The creation process of a deployment package looks very similar to that
of a virtual environment in Python.

So, we can clearly make out that there are no servers running round the clock in the case of
serverless infrastructures. There is a clear benefit for this, which includes not having a
dedicated Ops team member for monitoring the server boxes. So the extra member, if any,
can focus on better things, such as software research, and so on. Not having servers running
through the entire day saves a lot of money and resources for the company and/or
personally. This benefit can be very clearly seen among machine learning and data
engineering teams who make use of GPU instances for their regular workload. So having
on-demand serverless GPU instances running, saves a lot of money without the developers
or the Ops team needing to maintain them around the clock.

Understanding microservices

Similar to the concept of serverless, the design strategy, which is the microservice-oriented
strategy, has also been very popular recently. This architecture design existed a long time
before the idea of serverless came into existence though. Just as we tried to understand the
serverless architectures from the technical definition on the internet, we shall try to do the
same for microservices. The technical definition for microservices is:

"Microservices, also known as the microservice architecture, is an architectural style
that structures an application as a collection of loosely coupled services, which implement
business capabilities.”

[7]

The Serverless Paradigm Chapter 1

Planning and designing the architecture in the form of microservices has its fair share of
positives and negatives, just like serverless architectures. It's important to know about both,
in order to appreciate and understand when and when not to leverage microservices in
your existing architecture. Let's look at this and understand the positives of having
microservice architectures, before moving over to the negatives.

Microservices help software teams stay agile, and improve incrementally. In simpler terms,
as the services are decoupled from each other, it is very easy to upgrade and improve a
service without causing the other to go down. For example, in social network software, if
the chat and the feed are both microservices, then the feed doesn't have to go down when
the software team are trying to upgrade or do minor fixes on the chat service. However, in
large monolithic systems, it is difficult to break things up so easily in the way one can do
with microservices. So, any fix or upgrade on even a small component of the architecture
comes with downtime with the fix taking more time than intended.

The sheer size of the code base of monolithic architectures itself acts as a hindrance progress
in the case of any small failures. Microservices, on the other hand, greatly help in boosting
developer productivity by keeping code bases lean, so that they can fix and improve the
service with very little or no overhead and downtime. Microservices can be much better
leveraged via containers, which provide effective and complete virtual operating system
environments, processes with isolation, and dedicated access to underlying hardware
resources.

However, microservices come with their own bunch of disadvantages and downsides, the
major one being having to deal with distributed systems. Now that each service is surviving
on its own, the architect needs to figure out how each of them interacts with the others in
order to make a fully functional product. So, proper co-ordination between the services and
the decisions regarding how services move data between them is a very difficult choice that
needs to be taken by the architect. Major distributed problems such as the consensus, the
CAP theorem, and maintaining the stability of consensus, and the connection, are some issues
that the engineer needs to handle while architecting for microservices. Ensuring and
maintaining security is also a major problem in distributed systems and microservices. You
needs to decide on separate security patterns and layers for each microservice, along with
the security decisions necessary for the data interaction to happen between the services.

[81]

The Serverless Paradigm Chapter 1

Serverless architectures don't have to be
real-time only

Serverless architectures generally are leveraged as real-time systems as they work as a
function as service which is triggered by a set of available triggers. However, this is a very
common misconception, as serverless systems can be leveraged equally well both as real-
time and batch architectures. Knowing how to leverage the concept of serverless systems as
batch architectures will open up many engineering possibilities, as all engineering teams
don't necessarily need or have real-time systems to operate.

Serverless systems can be batched by leveraging the following:

¢ The cron facility in triggers
e The concept of queues

Firstly, let's understand the concept of the cron facility in triggers. Serverless systems on the
cloud have the ability to set up monitoring, which enables the trigger to get triggered every
few minutes or hours and can be set as a normal cron job. This helps in leveraging the
concept of serverless as a regular cron batch job. In the AWS environment, Lambda can be
triggered as a cron via AWS CloudWatch, by setting the frequency of the cron by manually
entering the time interval as the input and also by entering the interval in the cron format:

Example Cron expression

Invoke Lambda function every 5 minutes

€8] copy

rate (5 minutes)

Invoke Lambda function every hour

€21 copy

rate (1 hour)

Invoke Lambda function every seven days

€8] copy

rate (7 days)

[91]

The Serverless Paradigm Chapter 1

One can also leverage the concept of queues when building serverless batch architectures.
Let's understand this by setting an example data pipeline. Let's say the system which we
intend to build does the following tasks:

1.

2.

A user or a service sends some data into a database or a much simpler data store,
such as AWS's S3.

Once there are more than 100 files in my data store, we'll want to do some task.
Let's say, doing some analytics on them, for example, such as counting the pages.

This can be achieved via queues, and this is one of the simpler serverless systems we can
consider as an example. So, this can be achieved as follows:

1.

The user or the service uploads or sends the data to the data store which we have
selected.

A queue is configured for the purpose of this task.

An event can be configured to S3 buckets or data stores so that as soon as data
enters into the store, a message is sent to the queue which we have configured
earlier.

Monitoring systems can be set to monitor the queue for the number of messages
in it. It is advisable to use the monitoring system of the cloud provider you are
using so that the system stays completely serverless.

Alarms can be set to the monitoring systems, configuring a threshold for these
alarms. For example, the alarm needs to be triggered whenever the number of
messages in our queue reaches or exceeds 100.

This alarm can act as a trigger to the Lambda function which does the analytics
by first receiving messages from the queue and then querying the data store
using the filename received from the message.

Once the analytics are completed on the files, the processed files can be pushed to
another data store for storage.

After the entire task is completed, the container or the server where the Lambda
function has run will be terminated, thus making this pipeline completely
serverless.

[10]

The Serverless Paradigm Chapter 1

Pros and cons of serverless

As we now understand what serverless architectures and pipelines look like, how they may
be leveraged into existing architectures, and also how microservices help keep architectures
leaner and boost developer productivity, we shall look at the pros and cons of serverless
systems in detail, so that software developers and architects can make decisions regarding
when to leverage the serverless paradigm into their existing systems and when not to.

The positives of serverless systems are:

e Lower infrastructure costs: By deploying serverless systems, the infrastructure
costs can be greatly optimized, as there would not be a need for servers to be
running around the clock every day. As the servers start whenever the function is
triggered, and stop whenever the function gets executed successfully, the billing
would only be done for that brief time period when the function was running.

¢ Less maintenance needed: By virtue of the preceding reason, there is also no
need for continuous monitoring and maintenance of servers. As the functions and
triggers are automated, there is almost zero maintenance required for serverless
systems.

e Higher developer productivity: As the developers don't need to worry about
downtime and server maintenance, they can focus and work on better software
challenges, such as scaling and designing functionalities.

The remaining part of the book will show you how serverless systems are changing the way
software is done. So, as this chapter is intended to help architects decide whether serverless
systems are a good choice for their architecture or not, we shall now look at the
disadvantages of serverless systems.

The disadvantages of serverless systems are:

e Time limit of the function: The function which is whether executed, be it AWS's
Lambda or GCP's cloud functions, has an upper time limit of 5 minutes. This
makes execution of heavy computations impossible. However, this can be solved
by executing a provisioning tool's playbook in nohup mode. This will be covered
in detail, later in the chapter. However, making the playbook ready and setting
up the container and anything else should be completed within the 5 minute time
limit. The container gets automatically killed when the 5 minute limit is exceeded.

[11]

The Serverless Paradigm Chapter 1

No control over the container environment: The developer has no control over
the environment of the container that is being created for executing the function.
The operating system, the filesystem, and so on, are all decided by the cloud
provider. For example, AWS's Lambda functions are executed inside containers
that run the Amazon Linux operating system.

Monitoring containers: Apart from the basic monitoring capabilities that are
provided by the cloud provider via their in-house monitoring tools, there is no
mechanism to do detailed monitoring of the container that is executing the
serverless function. This becomes even more difficult when scaling up serverless
systems to accommodate distributed systems.

No control on security: There is no control on how the security of the data flow is
ensured, as there is very little control over the container's environment. The
container can be run in the VPC and subnets of the developer's choice, though,
which helps work around this disadvantage.

However, serverless systems can be scaled up to distributed systems for large- scale
computations where the developer need not worry about the time limit. As already
mentioned, this will be discussed in detail in the upcoming chapters. However, for insight
into an intuition on how one can choose serverless systems over monolithic systems for
large-scale computations, let us understand some important pointers that need to be kept in
mind when taking that architectural decision.

The pointers to be kept in mind when scaling serverless systems to distributed systems are:

To scale up serverless systems into serverless distributed systems, one must
understand how the concept of nohup works. It is a POSIX command that allows
programs and processes to run in the background.

Nohup processes should be properly logged, including both the output and the
error logs. This is the only source of information for your processes.

A provisioning tool, such as Ansible or Chef or a similar one, needs to be
leveraged to create a master-workers architecture which has been spawned via
the playbook running in nohup mode in the container where the serverless
function is being executed.

It is a good practice to ensure that all tasks that are being executed by the
provisioning tool via the master server are properly monitored and logged, as
there is no way one can retrieve the logs once the entire setup finishes executing.

[12]

The Serverless Paradigm Chapter 1

e Proper security needs to be ensured by using a temporary credential facility
available from the cloud providers.

e Proper closure should be ensured for the system. The workers and the master
should self-terminate immediately after the pipeline of tasks finishes executing.
This is very important and this is what makes the system serverless.

¢ Generally, temporary credentials come with an expiry time, which is 3,600
seconds for most environments. So, if the developer is using temporary
credentials to execute a task which is supposed to take more than the expiry time,
then there is a danger of the credentials getting expired.

e Debugging distributed serverless systems is an extremely difficult task for the
following reasons:
¢ Monitoring and debugging a nohup process is extremely difficult.
Whenever you want to debug one, you have to either refer to the
log file created by the process or kill the nohup process by using
the process ID, and then manually run the scripts for debugging.

¢ As the complete list of tasks executes sequentially in the
provisioning tool, there is a danger that the instances may get
terminated because the developer has forgotten to kill the nohup
process before starting the debugging process.

e As this is a distributed system, it goes without saying that the
architecture should be able to self-heal in the case of any failure or
a disaster. An example scenario can be when one of the workers
goes down while performing some operation on a bunch of files.
The entire bunch of files is now lost, and there is no means of
recovery.

¢ Another advanced disaster scenario can be when two worker
servers go down while performing some operations on a bunch of
files. In this case, the developer does not know which files have
been executed successfully and which haven't.

e It is a good practice to ensure that all the worker instances receive an equal
amount of the load to execute so that the load across the distributed system stays
even and time and resources are well optimized.

[13]

The Serverless Paradigm Chapter 1

Summary

In this chapter, we learned what serverless architecture is. Most importantly, the chapter
helps architects decide if serverless is the way forward for their team and their engineering,
and how to transition/migrate from their existing infrastructure to a serverless paradigm.
We also looked at the paradigm of microservices and how they help make lightweight and
highly agile architectures. This chapter also went into great detail about when a team
should start thinking about microservices and when can they migrate or break their existing
monolith(s) into microservices.

We then learned the art of building batch architectures in the serverless domain. One of the
most common myths is that serverless systems are only for real-time computation purposes.
However, we have learned how to leverage these systems for batch computations too, thus
facilitating a whole lot of applications with the serverless paradigm. We looked at the pros
and cons of going serverless so that better engineering decisions can be taken accordingly.

In the next chapter, we will cover a very detailed understanding of how AWS Lambda
works, which is the core component of serverless engineering in the AWS cloud
environment. We will understand how triggers work and how AWS Lambda functions
work. You will learn about the concept of leveraging containers for executing serverless
functions and the associated computational workload. Following that, we will also learn
about configuring and testing Lambda functions, along with understanding the best
practices while doing so. We will also cover versioning Lambda functions, in the same way
versioning is done in code, and then create deployment packages for AWS Lambda, so that
the developer can accommodate third-party libraries comfortably, along with the standard
library ones.

[14]

Building a Serverless
Application in AWS

This chapter will introduce the concept of serverless applications using AWS Lambda as the
tool of choice. This will help you understand the concept, intuition, and working
components involved in a serverless tool. It will also explain the nuances involved in
security, user-controls, and versioning code inside Lambda. You will be guided via hands-
on tutorials and lessons for understanding and learning to use AWS Lambda. So, it is
recommended that you follow along this chapter with a laptop and an AWS account setup
to easily execute the given instructions.

This chapter will cover the following topics:

e Triggers in AWS Lambda
Lambda functions

Functions as containers

Configuring functions

Testing Lambda functions
¢ Versioning Lambda functions

Creating deployment packages

Building a Serverless Application in AWS Chapter 2

Triggers in AWS Lambda

Serverless functions are on-demand computational concepts. So, there has to be an event
that needs to trigger a Lambda function so that the entire computational process is started.
AWS Lambda has several events which can act as a trigger. Almost all services of AWS can
act as AWS Lambda's triggers. Here is the list of services that you can use for generating
events for Lambda to respond to:

e API Gateway

o AWSIoT

e CloudWatch Events
¢ CloudWatch Logs

¢ CodeCommit

¢ Cognito Sync Trigger
e DynamoDB

¢ Kinesis

e 53

¢ SNS

The triggers page of AWS Lambda looks like this:

Lambda Functions Create function

Step 1

Select blueprint Configure triggers

You can choose to add a trigger that will invoke your function.

Configure triggers

(@ Welcome to AWS Lambda! You can get started on creating your first Lambda function by choosing one of the X

Step 3 blueprints below.

Add trigger

I|| n Lambda

£ e =
@ Awsior

\‘/ CloudWatch Events

\‘, CloudWatch Logs

[16]

Building a Serverless Application in AWS Chapter 2

Let's take a look at some of the following important and widely-used triggers that are
available, and understand how they can be leveraged as Faa$S in the serverless paradigm.
They are as follows:

o API Gateway: This trigger can be used to create efficient, scalable, and serverless
APIs. One scenario where a serverless API makes sense would be while building
a querying interface for S3. Let us assume that we have a bunch of text files in an
S3 bucket. Whenever a user hits the API with a query parameter, which can be
some word that we want to search in the text files in the bucket, the API
Gateway's trigger will launch a Lambda function that executes the computational
logic and workload for executing the query. The Lambda function that we want
our API to trigger can be specified at the API creation time. The trigger will be
created accordingly in the corresponding Lambda function's console. This is what

it looks like:
:1: Amazon API Gateway APls > Lambda-Test (dc45bfépdj) > Resources > /(Ovxdzfkhba) > GET Show all hints 9
APIs . Resources Actions~ '@/ - GET - Setup
Lambda-Test v/
Choose the integration point for your new method.
GET
| Resources
Stages Integration type @ Lambda Function €@
HTTP @
Authorizers
Mock @
Gateway Responses AWS Service @
Models
Use Lambda Proxy integration [i]
Documentation
Lambda Region s-east-1 4
Binary Support
PetStore You do not have any Lambda Functions in us-east-1. Create a Lambda Function
Usage Plans
Save

API Keys

Custom Domain Names
Client Certificates

Settings

[17]

Building a Serverless Application in AWS Chapter 2

CloudWatch: It events mostly help the user in setting the cron scheduling for
Lambda. The CloudWatch Logs trigger is useful whenever a user wants to
execute a computational workload depending on some keyword in the
Cloudwatch Logs. However, the CloudWatch Alarms cannot trigger Lambda
directly via the CloudWatch trigger. They have to be sent via a notification
system, such as the AWS Simple Notification Service (AWS SNS). This is how
you can create a cron execution in AWS Lambda. In the following screenshot, the
Lambda function is set to execute every minute:

Step 4

CloudWatch Events ||| n Lambda
Rule
Pick an existing rule, or create a new one
Create a new rule v
Select or create a new rule
Rule name*
Enter a name to uniquely identify your rule

Lambda-cron

Rule description

Provide an optional description for your rule

Rule type
Trigger your target based on an event pattern, or based on an automated schedule
Event pattern

© Schedule expression

Schedule expression*
Self-trigger your target on an automated schedule using Cron or rate expressions. Cron expressions
are in UTC

1 minute

e.g. rate(1 day), cron(0 17 ? * MON-FRI *)

[18]

Building a Serverless Application in AWS Chapter 2

e S3: This is a document store of AWS. So, whenever a file is added, removed, or
changed, an event will be sent to AWS Lambda when added as a trigger. So, if
you want to do some computational workload on a file as soon as the file gets
uploaded, then this trigger helps to do that. This is what an S3's event structure
looks like:

"Records": [
{
"eventVersion":"2.0",
"eventSource":"aws:s3",
"awsRegion":"us-east-1",
"eventTime" :The time, in ISO-8601 format, for example, 1970-01-01T00:00:00.000Z, when S3 fini
"eventName" :"event-type",
"userIdentity": {
"principalId":"Amazon-customer-ID-of-the-user-who—caused-the-event"
be
"requestParameters": {
"sourceIPAddress":"ip-address-where-request-came-from"
be
"responseElements": {
"x-amz-request-id":"Amazon S3 generated request ID",
"x-amz-id-2":"Amazon S3 host that processed the request"
be
"s3":
"s3SchemaVersion":"1.0",
"configurationId":"ID found in the bucket notification configuration",
"bucket": {
"name":"bucket-name",
"ownerIdentity":{
"principallId":"Amazon-customer-ID-of-the-bucket-owner"
I
"arn":"bucket-ARN"
by
"object":{
"key":"object-key",
"size":object-size,
"eTag":"object eTag",
"versionId":"object version if bucket is versioning-enabled, otherwise null",
"sequencer": "a string representation of a hexadecimal value used to determine event se
only used with PUTs and DELETEs"

[19]

Building a Serverless Application in AWS

Chapter 2

e AWS SNS: The SNS service of AWS helps users to send notifications to other
systems. This service can also be used for catching CloudWatch Alarms and
sending the notifications to a Lambda function for computational execution. This

is what a sample SNS event looks like:

Amazon SNS Sample Event

{

"Records": [
{

"EventVersion": "1.0",

"EventSubscriptionArn": eventsubscriptionarn,

"EventSource": "aws:sns",

"Sns": {
"SignatureVersion": "1",
"Timestamp": "1970-01-01T00:00:00.000Z",
"Signature": "EXAMPLE",

"SigningCertUrl": "EXAMPLE",
"MessageId": "95df01b4-ee98-5cb9-9903-4c221d4lebb5e",
"Message": "Hello from SNS!",
"MessageAttributes": {
"Test": {
"Type": "String",
"Value": "TestString"
I
"TestBinary": {
"Type": "Binary",
"Value": "TestBinary"
}
}
"Type": "Notification",
"UnsubscribeUrl": "EXAMPLE",
"TopicArn": topicarn,
"Subject": "TestInvoke"

€8] copy

[20]

Building a Serverless Application in AWS Chapter 2

Lambda functions

Lambda functions are the core operating parts of a serverless architecture. They contain the
code which is supposed to be executed. These functions are executed whenever the trigger
attached to it has been set off. We have already learned about some of the most popular
Lambda triggers in the previous section.

Whenever a Lambda function is triggered, it creates a container with the respective settings
set by the user. We'll learn more about the container in our next section.

The spinning up of containers takes a bit of time, which may result in a latency whenever a
fresh invocation of a Lambda function is done, as it takes time to set up the environment
and bootstrap the settings mentioned by the user in the Advanced settings tab. So, to
overcome this latency, AWS thaws a container for some time for reuse in case of another
Lambda invocation within the thawing time. So, using a thawed or a ready-made Lambda
function helps in overcoming the latency problem. However, the same global namespace of
the thawed container would be reused for the new invocation too.

So, if the Lambda function has any global variables that get manipulated inside the
function, it is a good idea to convert them into local namespaces, as the manipulated global
namespace variables will be reused, leading to faulty execution results of the Lambda
function.

The user needs to specify the technical details for the Lambda function in the Advanced
Settings tab, which include the following;:

e Memory (MB): This is the maximum memory that the Lambda function needs to
be allocated for the purpose of your function. The CPU of the container would be
assigned accordingly.

e Timeout: The maximum amount of time the function needs to execute before the
container gets automatically stopped.

e DLQ Resource: This is a dead-letter setting to AWS Lambda. The user can add
either an SQS queue or an SNS topic for configuring this. Lambda functions get
asynchronously retried for at least five times on failure.

e VPC: This enables the Lambda function to access components or services in some
particular VPCs. The Lambda function executes in a default VPC of its own.

o KMS key: If there are any environment variables entered along with the Lambda
function, this helps us encrypt them using an AWS Key Management Service
(KMS) by default.

[21]

Building a Serverless Application in AWS Chapter 2

The Lambda function's Advanced settings page looks like this:

v Advanced settings

Memory (MB)*
Your function is allocated CPU proportional to the memory configured.
O
128 MB
Timeout*
0 min | 3 sec

DLQ Resource Info
Choose the AWS service to send event payload to after exceeding maximum retries.

Select resource v
VPC Info
Select a VPC that your function will access.

No VPC v

Enable active tracing Info

KMS key Info
Select a KMS key to encrypt the environment variables at rest, or simply let Lambda manage the
encryption.

(default) aws/lambda v

Functions as containers

For understanding the concept of functions being executed as/inside containers, we need to
properly understand the concept of containers. To cite the definition of a container from the
Docker documentation (https://www.docker.com/what-docker):

A container image is a lightweight, stand-alone, executable package of a piece of software
that includes everything needed to run it: code, runtime, system tools, system libraries,
settings.

[22]

https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker

Building a Serverless Application in AWS Chapter 2

What is available for both Linux and Windows based applications; containerized software
will always run the same, regardless of the environment.

Containers isolate software from its surroundings (for example, differences between
development and staging environments) and help reduce conflicts between teams running
different software on the same infrastructure.

So, the concept of containers is that they are self-sustainable isolated environments just like
the containers in a container ship that can be hosted and be worked upon any host OS, the
host OS being the host ship in our analogy. The figurative depiction of the analogy would
look something like this:

Similar to the aforementioned analogy, AWS Lambda's functions are also launched inside a
unique container for each function. So, let us understand this topic in more detail, point by
point:

1. The Lambda function can be in the form of a single code file or in the form of a
deployment package. The deployment package is a zipped file that includes the
core function file along with the libraries which would be used by the function.
We shall be learning in detail about how to create the deployment package in the
Creating deployment packages section of this chapter.

2. Whenever a function is triggered or started, AWS spins up an EC2 instance with
the AWS Linux operating system for running the function. The configuration of
the instance would be dependent on the ones provided by the user in the
Advanced settings tab of the Lambda function.

3. There is a maximum time limit of 300 seconds, or 5 minutes, for a function to
execute successfully, after which the container would be destroyed. So, this needs
to be kept in mind while designing the Lambda functions and/or the deployment
packages.

[23]

Building a Serverless Application in AWS Chapter 2

Configuring functions

In this section, we will go through the ways of configuring Lambda functions and
understand all the settings in great detail. Like in the previous section, we will learn about

each configuration and its settings, as follows:

1. You can go to the page of AWS Lambda by selecting it from the drop-down menu
that is present in the top-left corner of the AWS console. This can be done as

follows:

RajRohit v N.Virginia v Support v

Services ~ Resource Groups v % Q

Histol (
i lambda Group A-Z
Lambda
Lambda
EC2 Run Code without Thinking about Servers
CodeBuild

Build and Test Code

Lex
Build Voice and Text Chatbots

Laioda Rinesis

Batch Data Pipeline
QuickSight
AWS Glue
) storage
S3
EFS & Artificial Inteligence
Glacier Lex
Storage Gateway Amazon Polly
Rekognition
Machine Learning
@ Database
RDS
DynamoDB @ Internet Of Things
ElastiCache AWS loT
A close
Amazon Kinesis makes it easy to Amazon Simple Storage Service

collect, process, and analyze real- (Amazon S3) makes it simple and

© 2008 - 2017, Amazon Internet Services Private Ltd. or its affiliates. All rights reserved. Privacy Policy Terms of Use

@ Feedback (@ English (US)

2. Once the Lambda option is selected, it redirects the user to the AWS Lambda
console, which looks something like this:

[24]

Building a Serverless Application in AWS

Chapter 2

Lambda

AWS Lambda

Run code without thinking about servers.

Pay for only the compute time you consume.

How it works

Upload your code to AWS Lambda, set it up to trigger from other AWS
services, HTTP endpoints, or in-app activity, and let Lambda run and scale

Get started

Author a Lambda function from
scratch, or choose from one of many
preconfigured examples.

More resources

your code with high
servers.

Read more in FAQs [4

Related services
Kinesis

Amazon Kinesis makes it easy to
collect, process, and analyze real-

Feedback (@ English

Amazon Simple Storage Service
(Amazon S3) makes it simple and

— all without isioning or any Doci
API reference
Serverless Application Model (SAM)
SAM Local
S3 Forums

Privacy Policy

Terms of Use

3. For creating a function, you need to click on the orange Create a function button
on the right. This will open a console for the function creation. This looks

something like this:

Lambda Functions Create function

® Welcome to AWS Lambda! You can get started on creating your first Lambda function by choosing one of the blueprints below.

Blueprints info

Q Filter by tags and attributes or search by keyword

1 2 3 4 5 6 7

>

kinesis-firehose-syslog-to-json

records from RFC3164 Syslog format to JSON.

nodejs - kinesis-firehose

splunk-elb-application-access-logs-processor

collector

nodejs6.10 - splunk - elb - s3 - application-elb

Feedback (@ English (US)

An Amazon Kinesis Firehose stream processor that converts input

Stream Application ELB access logs from S3 to Splunk's HTTP event

logicmonitor-send-cloudwatch-events

Creates LogicMonitor OpsNotes for CloudWatch Events, thereby

enabling correlation between events and performance data.

python - cloudwatch-events - monitoring - eventstream - ext-libraries

alexa-skill-kit-sdk-factskill

nodejs6.10 - alexa

Demonstrate a basic fact skill built with the ASK NodeJS SDK

Terms of Use

[25]

Building a Serverless Application in AWS Chapter 2

4. Let's create a function from scratch in order to understand the configurations
better. So, for doing that, click on the Author from scratch button on the top-right
corner. After clicking it, the user will be directed to Lambda's first-run console,
which looks something like this:

Lambda Functions Create function Author from scratch

Basic information info

Name*

Role*
Defines the permissions of your function. Note that new roles may not be available for a few minutes after creation. Learn more
about Lambda execution roles.

Choose an existing role v
Existing role*

You may use an existing role with this function. Note that the role must be assumable by Lambda and must have Cloudwatch
Logs permissions.

v

* These fields are required.

5. This page has three configurations which the user can select, which are Name,
Role, and Existing role. The Name value is where the user can enter the name of
the Lambda function. The Role value is how you can define permissions in the
AWS environment. The Role value's drop-down list would contain the following
options: Choose an existing role, Create new role from template(s), and Create a
custom role. They can be seen as follows:

Role*
Defines the permissions of your function. Note that new roles may not be available for a few minutes after creation. Learn more
about Lambda execution roles.

Choose an existing role v

Choose an existing role

Create new role from template(s) la and must have Cloudwatch

Create a custom role

[26]

Building a Serverless Application in AWS

Chapter 2

The Choose an existing role option will enable us to select an already existing role
with pre-configured permissions. The second option helps the user with creating a
role from pre-baked templates. The Create a custom role option allows the user to
create a role with permissions from scratch. The list of pre-baked roles looks like

this:

Laml

Q

CloudFormation stack read-only permissions
AMI read-only permissions

KMS decryption permissions

S3 object read-only permissions
Elasticsearch permissions

SES bounce permissions

Test Harness permissions

Simple Microservice permissions

VPN Connection Monitor permissions

SQS Poller permissions

AWS |oT Button permissions

Amazon Rekognition no data permissions
Amazon Rekognition read-only permissions
Amazon Rekognition write-only permissions
AWS Config Rules permissions

AWS Batch access permissions

CAIC nushlich nalicse

nutes after creation. Learn more

)te that basic Lambda
C, the required permissions will

eated. Learn more about the

[27]

Building a Serverless Application in AWS Chapter 2

6. Select one from the pre-baked templates for the sake of this tutorial. By
pressing Create function in the lower-right part of the screen, we will land on the
Lambda function's creation page, which looks similar to this:

Lambda Functions Test-Lambda ARN - arn:aws:lambda:us-east-1:080983167913:function:Test-Lambda

Test_Lambda Qualifiers v H Actions v Select a test event.. v m

© Congratulations! Your Lambda function "Test-Lambda" has been successfully created. You can now change its code and configuration. Click on X
the "Test" button to input a test event when you are ready to test your function.

Configuration Triggers Monitoring

v Function code

Code entry type Runtime Handler Info

Edit code inline v Node.js 6.10 v index.handler

index s

1- exports.handler = (event, context, callback) => {

2 // TODO implement
3 callback(null, 'Hello from Lambda');
4 1

7. The preceding page indicates that we have successfully created an AWS Lambda
function. We shall now explore the advanced settings of this function. They are
present in the lower part of the same console. They will look something like this:

[28]

Building a Serverless Application in AWS

Chapter 2

Functions

Dashboard

AWS Lambda % » Environment variables

» Tags

v Execution role

Defines the perm
not be
Lambd

ution ro

Choose an existing role

ninutes after c

of your function. Note that new roles may
eation. Learn more about

v

th this function. Note that the role

permissions.

service-role/Pycontw-Role

» Network

d must have Cloudwatch Logs

v Basic settings

Memory (MB) Info
Your function is allocated CPU proportional to the memory

configured.
128 MB

Timeout Info
] min | 3 sec

Description

» Debugging and error handling

We shall now try to understand each of those parts in detail.

8. The unfurled Environment variables section contains text boxes to enter the key-

value pair of environment variables that will be used by our function. One can
also optionally mention details on the encryption setting that we want to have for
the environment variables. The encryption needs to be done via AWS KMS (Key
Management Service). The unfurled settings box of the environment variables

looks something like this:

v Environment variables

You can define Environment Variables as key-value pairs that are accessible from your function code. These are useful to store configuration settings

without the need to change function code. Learn more.

¥ Encryption configuration

Enable helpers for encryption in transit Info

KMS key to encrypt at rest Info

Select a KMS key to encrypt the environment variables at rest, or simply let Lambda manage the encryption.

(default) aws/lambda

[29]

Building a Serverless Application in AWS Chapter 2

9. The next settings section is Tags. This is similar to the tagging feature of all the
available AWS services for easy service discovery purposes. So, similar to all
AWS services's tags, this also needs just a key and a value. The unfurled Tags
section looks something like this:

v Tags

You can use tags to group and filter your functions. A tag consists of a case-sensitive key-value pair. Learn more.

10. The next section that will be visible after the Tags section is the Execution role
section, in which the user can set the Identity Access Management (IAM) role for
the execution of the Lambda function. As we have already discussed what IAM
roles are previously in the book, we will not be covering that again here. If the
user has not set the role when creating the function itself, they can always set that
here. The section will be visible in the Lambda console as follows:

v Execution role

Defines the permissions of your function. Note that new roles may
not be available for a few minutes after creation. Learn more about
Lambda execution roles.

Choose an existing role v

Existing role

You may use an existing role with this function. Note that the role
must be assumable by Lambda and must have Cloudwatch Logs
permissions.

service-role/Pycontw-Role v

[30]

Building a Serverless Application in AWS Chapter 2

11. The next section is the Basic settings section, which includes settings such as the
memory of the Lambda container, time-out for the container, and the description
for the Lambda function. The memory of the container can range from 128 MB to
1,536 MB. The user can choose any value within that range and will be billed
accordingly. The time-out can be set from 1 second to 300 seconds, which is 5
minutes. The time-out is the time which the Lambda function and its container
would run before being stopped or terminated. The next setting is the
Description value of the Lambda function, which acts as the metadata of a
Lambda function. The section looks like this in the console:

v Basic settings

Memory (MB) Info

Your function is allocated CPU proportional to the memory
configured.

O
128 MB

Timeout Info

0 min | 1 : |sec

Description

[31]

Building a Serverless Application in AWS Chapter 2

12.

13.

14.

The next section is the Network section, which is also about the network settings
of the Lambda function related to AWS's Virtual Private Cloud (VPC) and
related subnets. Even if No VPC is selected as an option, AWS Lambda runs in its
own secure VPC. However, if your Lambda function accesses or deals with any
other service which is in a particular VPC or in a subnet, the corresponding
information needs to be added in this section so that the network allows traffic
from the Lambda function's container. This section looks like this in the console:

v Network

VPC Info

No VPC v

No VPC

Default vpc-
(]

The sensitive information in the preceding screenshot, such as the IP address and
the ID of the VPC, are masked for security purposes.

The next section is the Debugging and error handling section. This section
enables the user to set up measures for ensuring fault tolerance and exception
handling of the Lambda function. This includes the Dead Letter Queue (DLQ)
settings.

Lambda automatically retries failed executions for asynchronous invocations. So,
the payloads that were not processed would be automatically forwarded to the
DLQ resource. The DLQ settings look like this in the Lambda console:

[32]

Building a Serverless Application in AWS

Chapter 2

v Debugging and error handling

DLQ Resource Info

Choose the AWS service to send event payload
to after exceeding maximum retries.

Select resource v
None

SNS

SQs

The user can also enable active tracing for the Lambda functions, which
would help in detailed monitoring of the Lambda container. This setting in
the Debugging and error handling section of the Lambda console looks like

this:

v Debugging and error handling

DLQ Resource Info

Choose the AWS service to send event payload
to after exceeding maximum retries.

Select resource v

Enable active tracing Info

[33]

Building a Serverless Application in AWS Chapter 2

Testing Lambda functions

Just like every other software system and programming paradigm, proper testing of
Lambda functions and serverless architectures is very important before deploying into
production. We will try to understand the testing of Lambda functions in the following
points:

1. In the top-most bar of the Lambda console, one can observe the Save and test
option, which is represented by an orange button. This button saves the Lambda
function and then runs the configured tests on that function. This looks
something like this in the console:

Qualifiers ¥ I Actions Vv l I Save l Select a test event.. v

Save and test

Test-Lambda

Configuration Triggers Monitoring

You do not have any triggers for this function.

+ Add trigger C Refresh triggers

» View function policy

2. Also, in the same bar, there exists a drop-down menu that reads Select a test
event.... This contains a list of testing events available for testing Lambda
functions. The drop-down looks like this:

Qualifiers v I Actions ¥ l I Save l Select a test event.. v
Save and test Configure test events

[34]

Building a Serverless Application in AWS Chapter 2

3. Now, for further configuration of test events for the Lambda function, the user
needs to select the Configure test events option in the drop-down. This will open
a popup with the test events menu, which looks like this:

Configure test event

A function can have up to 10 test events. The events are persisted so you can switch to another computer or web browser

and test your function with the same events.

O Create new test event

Event template

Hello World v
Event name

1-({

2 "key3": "value3",

3 "key2": "value2",

4 "keyl": "valuel"

5 %

[35]

Building a Serverless Application in AWS Chapter 2

4. That would open the basic Hello World template, which has three pre-configured
JSON format test events, or edge cases. However, depending on what the
Lambda function does, one can select some other test event. The available list of
testing templates can be seen in the Event template drop-down menu. The list in
the drop-down looks something like this:

A function can have up to 10 test events. The events are persisted so you can switch to another computer or web browser
and test your function with the same events.

© Create new test event

Event template
Hello World v

Q

Alexa End Session

Alexa Smart Home - Control
Alexa Smart Home - Turn On

Alexa Intent - MyColorls
Lex

Lex - Make Appointment
Lex BookTrip - Book Car
Lex BookTrip - Book Hotel

Lex - Order Flowers

5. For example, let's imagine we are building a pipeline that involves the Lambda
function getting started whenever an image file is added to an S3 bucket, and the
function does some image processing tasks and puts it back to some data store.
The test event of the S3 Put notification looks something like this:

[36]

Building a Serverless Application in AWS

Chapter 2

S3 Put

Event name

Event template

"Records": [

"eventVersion": "2.0",

"eventTime": "1970-01-01T00:00:00.000Z",

"requestParameters": {
"sourceIPAddress": "127.0.0.1"

1,
"s3": {
"configurationId": "testConfigRule",
"object": {
"eTag": "@123456789abcdef@12345678%abcdef",
"sequencer": "QA1B2C3D4E5F678901",
"key": "HappyFace.jpg",
"size": 1024
1,
"bucket": {
"arn": "arn:aws:s3:::mybucket",
"name": "sourcebucket",
"ownerIdentity": {
"principalId": "EXAMPLE"
1,
"s3SchemaVersion": "1.0"
1,

"responseElements": {

Cancel

6. After selecting or creating a test event, the user can select the Create option in the
bottom-right corner of the event creation console, wherein you shall be asked to
enter a name for the event. After entering the necessary details, the user will be
re-directed back to the Lambda console. Now, when you check the
TestEvent drop-down in the Lambda console, you can see the saved test event in
the list. This can be verified as follows:

Save and test

Qualifiers v I Actions Vv II Save I TestEvent

Saved Test Events

Te St‘ La m b d d | TestEvent

Configure test events

Configuration Triggers Monitoring

You do not have any triggers for this function.

[37]

Building a Serverless Application in AWS Chapter 2

As I have named the event as TestEvent, the test is visible by the same name in
the events drop-down menu.

6. Additionally, when we take a closer look at the event structure of S3 in the test
event, we can observe the meta-details that are being made available to the
Lambda function. The event structure looks like this:

"Records": [

{

"eventVersio

"eventSour

"awsRegiol 7

"eventTime' 970-01-01T00:00:00.0002",

"eventName' bjectCreated:Put",

"userIdentity":{
"principalld":"AIDAJDPLRKLG7UEXAMPLE"

!
"requestParameters":{
"sourceIPAddress":"127.0.0.1"
},
"responseElements": {
"x-amz-request-id" :"C3D13FE58DE4C810",
"x—amz-id-2":"FMyUVURIY8/IgAtTv8xRj skZQpcIZ9KG4V5Wp6S7S/IRWeUWe rMUESIgHVANO] pD"
}
IIS3II:{
"s3SchemaVersion":"1.0",
"configurationId":"testConfigRule",
"bucket":{
"name" : "sourcebucket",
"ownerIdentity":{
"principalld":"A3NL1KOZZKExample"
r
"arn":"arn:aws:s3:::sourcebucket"
},
"object":{
""HappyFace. jpg",
024,
d41d8cd98f00b204e9800998ecf8427e",
"versionId":"@96fKKXTRTt130n89fV0.nf1ljtsv6gko"

[38]

Building a Serverless Application in AWS Chapter 2

Versioning Lambda functions

The concept of the Version Control System (VCS) is for controlling and managing versions
of code. This functionality is available directly from the main Lambda console. Let's try and
learn how to version our Lambda functions:

1. The first option in the Actions drop-down in the Lambda console is the Publish
new version option. This option can be seen here:

Lambda Functions Test-Lambda

ARN - arn:aws:lambda:us-east-1:080983167913:function:Test-Lambda

Qualifiers v | Actions v ‘H Save | TestEvent v
Save and test Publish new version

Test-La m b(Create alias

Delete function

Configuration Export function 1

You do not have any triggers for this function.

4+ Add trigger C Refresh triggers

» View function policy

[39]

Building a Serverless Application in AWS Chapter 2

2. When the Publish new version option is selected, the versioning popup of the
Lambda console would be seen on the console. This would ask about the name

for the new version of your Lambda function. The popup looks something like
this:

Publish new version from $LATEST

Publishing a new version will save a "snapshot" of the code and configuration of the $LATEST version. You will be unable to
edit the new version's code. Please click to confirm.

Version description

[40]

Building a Serverless Application in AWS Chapter 2

3. After clicking the Publish button, you will be re-directed to the main Lambda
console. The successfully created Lambda version in the console looks something

like this:
Test_ I Version: 1 ¥ II Actions ¥ TestEvent v
Lambda:1

© Successfully created version 1 for function Test-Lambda. Click the tab on the left side of the X
window above to view your existing versions and aliases.

@ You are now viewing version 1 and associated code, config, and event sources. X

Configuration Triggers Monitoring

v Function code

@ Code and handler editing is only available for the $LATEST version. Click here to go X

to $LATEST.
Runtime Handler Info
Node.js 6.10 index.handler
index.js
1~ exports.handler = (event, context, callback) {

home?region=us-east-1# : © 2008 - 2017, Amazon Internet Services Private Ltd. or its affiliates. All rights

[41]

Building a Serverless Application in AWS Chapter 2

4. In the bottom half of the page, the following message can be noticed: Code and
handler editing is only available for the SLATEST version. This means that one
can only edit the code in the version named $LATEST. The versioned version of
Lambda functions are read-only and cannot be edited and manipulated. When
something goes wrong or when the user wants to revert back or refer to a
previous version, that version will overlay the SLATEST version to make edits
possible. The message looks like this:

v Function code

® Code and handler editing is only available for the $LATEST version. Click here to go X

to $LATEST.
Runtime Handler Info
Node.js 6.10 index.handler
index.js

[42]

Building a Serverless Application in AWS Chapter 2

5. When the Click here to go to SLATEST link is clicked, the user will be re-
directed to the SLATEST version of the function, which can be edited and
manipulated by the user. The console of the SLATEST version of the Lambda
function looks like this:

Lambda Functions Test-Lambda $LATEST
ARN - arn:aws:lambda:us-east-1:080983167913:function:Test-Lambda:$LATEST

Test_ I Version: $LATEST ¥ l I Actions Vv TestEvent v
Lambda:$LATEST
(@ You are now viewing version $LATEST and associated code, config, and event sources. X
Configuration Triggers Monitoring

v Function code

Code entry type Runtime Handler Info
Edit code inline v Node.js 6.10 v index.handler
index.js
1~ exports.handler = (event, context, callback) => {
2 /7 TODO implement
3 callbackChull, 'Hello from Lambda');
4 b

© 2008 - 2017, Amazon Internet Services Private Ltd. or its affiliates. All rights

[43]

Building a Serverless Application in AWS Chapter 2

Creating deployment packages

Lambda functions that have external libraries as dependencies can be packaged as
deployment packages and be uploaded into the AWS Lambda console. This is very similar
to creating a virtual environment in Python. So in this section, we shall learn and
understand the process of creating Python deployment for using in the Lambda functions.
We shall try and understand the process of creating deployment packages in detail, as
follows:

1. Deployment packages are generally in the format of ZIP packages. The contents
of the ZIP package is exactly the same as a normal library of any programming
language.

2. The package structure should be such that the library folders and the function file
are in the same destination or in the same hierarchy inside the folder structure of
the deployment package. The layout looks something like this:

€gg-info
aramiko-1.15.1.e PIL PIL.pth pip pip-6.1.1.egg-info pkg_resources ply
gg-info
PYTHON
ly-3.4.egg-info processing.py pyasn1 pyasn1-0.1.7.egg- pycrypto-2.6.1.eg pycurl-7.19.0.egg- pycurl.so
info g-info info
gpgme-0.3.egg pyliblzma-0.5.3.e pystache pystache-0.5.3.eqg python_daemon-1 python_dateutil-2. pyxattr-0.5.0.egg-
-info gg-info g-info .5.2.egg-info 1.egg-info info

[44]

Building a Serverless Application in AWS Chapter 2

3. The Python libraries can be installed by using the pip install
<library_name> -t <path_of_the_target_folder> command. This will
install the package inside the target folder. This can be done as in the following
screenshot:

ServerlessBook

4. Now, when we have the entire deployment package's folder along with the
library folders ready, we need to zip all of the folders including the Lambda
function file before uploading it into the console. The following screenshot shows
how the zipping needs to be done as per the folder hierarchy:

))
. x
PYTHON
lockfile.py lockfile.pyc [1zma.so] MarkupSafe-0.11.
egg-info

J' New Folder with Selection (137 Items)

Open
paramik Ogen With > m pip-6.1.1.egg-info ply

[ele]
Move to Trash

Get Info
Rename 137 Items...

ply-3.4 Compress 137 ltems pyasn1-0.1.7.egg- | pycrypto-2.6.1.eg | pycurl-7.19.0.egg-
Duplicate info g-info info

Make Alias
Quick Look 137 Items
Share »

pygpg Copy 137 Items pystache-0.5.3.eg | python_daemon-1| python_dateutil-2. | pyxattr-0.5.0.egg-
- Clean Up Selection g-info .5.2.egg-info 1.egg-info info

Show View Options

[45]

Building a Serverless Application in AWS Chapter 2

5. Now, as the zipped package is ready, we shall be trying to upload the package to
the Lambda console for processing. For uploading a Lambda package, we need to
select the drop-down list of the Code entry type option in the console. The
selection looks like this in the Lambda console:

Test_Lambda ‘ Qualifiers v H Actions v H Save I TestEvent v m

Configuration Triggers Monitoring

v Function code

Code entry type Runtime Handler Info

Edit code inline v Python 2.7 v index.handler

Edit code inline

Upload a .ZIP file context, callback) => {
Upload a file from Amazon S3
e o ey —eeed TPOM Lambda');
4 L

6. Once the Upload a .ZIP file option is selected, the uploader will become visible,
where the user can directly upload the deployment package or even upload it via
an S3 bucket. The wizard would look like this in the Lambda console:

[46]

Building a Serverless Application in AWS Chapter 2

Test_Lambda l Qualifiers v H Actions ¥ H Save I TestEvent v m

Configuration Triggers Monitoring

v Function code

Code entry type Runtime Handler Info

Upload a .ZIP file v Python 2.7 v index.handler

Function package*

[upload

For files larger than 10 MB, consider uploading via S3

» Environment variables

» Tags

@ English (US) © 2008 - 2017, Amazon Internet Services Private Ltd. or its affliates. All rights reserved. Privacy Policy Terms of Use

7. As mentioned previously, the user can choose to upload the deployment package
via an S3 file location too. This wizard looks like this in the Lambda console:

Test_Lambda | Qualifiers v || Actions ¥ H Save | TestEvent v m

Configuration Triggers Monitoring

v Function code

Code entry type Runtime Handler Info
Upload a file from Amazon S3 v Python 2.7 v index.handler
S3 link URL*

Paste an S3 link URL to your function code .ZIP.

» Environment variables

» Tags

@ English (US) © 2008 - 2017, Amazon Internet Services Private Ltd. or its affiliates. All rights reserved. Privacy Policy ~ Terms of Use

[47]

Building a Serverless Application in AWS Chapter 2

8. The deployment package's naming should be aligned with the values entered in
the handler part of the settings. The deployment package's name and the Lambda
function file's name are separated by a dot (.) and arranged in that order. This
can be explicitly seen in the following screenshot:

AWS Lambda X Lambda > Functions > Test-Lambda Help 8

ARN - arn:aws:lambda:us-east- function:Test-Lambda .
Dashboard The module-name.export value in

Functions Qualifiers ¥ Actions ¥ Save TestEvent v your function. For example,
"index.handler" would call
Save and test

exports.handler in index.js.

Test-Lambda

Configuration Triggers Monitoring

v Function code

Code entry type Runtime Handler Info
Upload a .ZIP file v Python 2.7 v index.handler

Function package*

[® upload processing.zip (27.5 MB)

For files larger than 10 MB, consider uploading via S3.

» Environment variables

@ Feedback (@ English (US) © 2008 - 2017, Amazon Internet Services Private Ltd. or its affliates. All rights reserved. Privacy Policy ~ Terms of Use

index should be the name of the Lambda function's file name deployment
package. The handler function file is the name of the core function handler
inside, which is the Lambda function. As AWS's documentation states:

The module-name export value in your function”. For example, index.handler would call
exports.handler in index.py.

[48]

Building a Serverless Application in AWS Chapter 2

Summary

In this chapter, we have learned the concepts of how triggers work for AWS Lambda and
how to select triggers depending on the problem statement and time intervals, in case of
cron job triggers. We understood what Lambda functions are, along with understanding
their functionalities and settings related to memory, VPCs, security, and fault tolerance. We
also learned about the way container reuse is done under the hood specifically for AWS
Lambda. Then, we covered event-driven functions and how they are implemented under
the hood, the concept of containers, and their uses and applications in the domain of
software engineering in general. Most importantly, from the concepts we learned regarding
containers, we can now appreciate the options for choosing containers for running the
Lambda functions.

After that, we talked about all the configuration settings available in the AWS Lambda
dashboard, which are necessary to build and run a Lambda function from start to finish
without any settings-related problems. We also learned about and understood the security
settings inside Lambda so that the necessary VPC details and security keys settings are
taken care of when configuring our Lambda functions. This was followed by testing
Lambda functions depending on the choice of trigger selected. We learned what the
responses of various AWS services look like, as they are the inputs for the Lambda
functions. We then learned how to write custom hand-made tests for custom testing
purposes.

Following that, we saw how versioning happens for the AWS Lambda functions. We
learned the differences between past and present versions. We also learned that the present
version is immutable, unlike the past versions, and also how to revert to past versions
without much effort. We also learned how to create deployment packages for functions that
have dependencies on external packages, which are not included in Python's standard
library. We came across the function code naming nuances, including the filename and the
method handler names, followed by the two ways deployment packages can be uploaded
to the Lambda console; one being a manual upload and the other being from an S3 file
location.

In the next chapter, we will be gaining a detailed understanding of the different triggers
available in the Lambda console and how to use them. We will also learn about
implementing them in Python code. We will understand the event structures and the
responses from different AWS services and use that to build our Lambda functions. We will
understand how to integrate each trigger into a Lambda function and do a specific task in
Python. Finally, we will also be learning about ideas and best practices on how to move
your existing infrastructures to serverless using the serverless paradigm.

[49]

Setting Up Serverless
Architectures

So far, we have understood what the serverless paradigm is, and also how serverless
systems work. We have also understood how AWS Lambda's serverless tool works. We
have also learned the basics of how triggers work in AWS Lambda as well as a detailed
understanding of the system settings and configuration available to the user in the Lambda
environment. We have also learned how the Lambda console works, and also how to
identify and use various parts of the Lambda console in detail, including code deployment,
trigger manipulation, deploying tests in the console, versioning our Lambda function, and
also the different settings available.

By the end of this chapter, you will have a clear understanding of all the important triggers
available for AWS Lambda and how you can use them to set up efficient Lambda
architectures. You will also understand what an event structure is, and what an event
structure looks like for some AWS resources, and how you can use that knowledge to write
and deploy better trigger-based Lambda architectures.

This chapter will cover the following points:

e 53 trigger

e SNS trigger

e S5QS trigger

e CloudWatch Event and Logs trigger

Setting Up Serverless Architectures Chapter 3

S3 trigger

S3 is the AWS object storage service, where the user can store and retrieve any type of
object. In this section, we shall be learning how the S3 trigger works, what the event
structure of an S3 event looks like, and also how to make use of them in the learning to
build a Lambda function.

We will be building a Lambda function that does the following:

1. Receives a PUT request event from the S3 service
2. Prints the name of the file and other major details
3. Transfers that file to a different bucket

So, let's get started on learning how to use the S3 trigger efficiently. We will be working on
this task step-by-step, as follows:

1. Firstly, we need to create two S3 buckets for the task. One will be the bucket
where the file will be uploaded by the user. The other will be the one where the
file is transferred and uploaded by the Lambda function.

2. The S3 console looks like the following screenshot when there are no pre-existing
buckets. You can go there by selecting the S3 service from the drop-down
Services menu in the top-left of your AWS console:

Identify optimal storage classes with S3 Analytics - Storage Class Analysis. Learn More » Documentation

* Amazon S3 @ Discover the new console Q Quick tips

+ Create bucket - Buckets - Regions s

You do not have any buckets. Here is how to get started with Amazon S3.

- Y
— 2 &

Create a new bucket Upload your data Set up your permissions
p 8 After you create a bucket, you can upload By default, the permissions on an object are
Buckets are globally unique containers for 5 5
. . your objects (for example, your photo or private, but you can set up access control
everything that you store in Amazon S3. A = L -
video files). policies to grant permissions to others.
Learn more Learn more Learn more

[51]

Setting Up Serverless Architectures Chapter 3

3. Let's create two buckets, namely receiver-bucket and sender-bucket.

4. The sender-bucket bucket will be used as the bucket where the user uploads
the files. The receiver-bucket bucket is the one where the Lambda function
uploads the files. So, as per our problem statement, whenever we upload files to
the sender-bucket bucket, the Lambda function gets triggered and the files get
uploaded to receiver-bucket.

5. When we click on the Create bucket button in the S3 console, we get a dialog that
looks like this:

Create bucket

® Name and region @ Set properties @ Set permissions @ Review

Name and region
Bucket name

Enter DNS-compliant bucket name

Region

US East (N. Virginia)

Copy settings from an existing bucket

You have no buckets 0 Buckets

[52]

Setting Up Serverless Architectures Chapter 3

6. In the preceding dialog, we need to enter the following settings:
¢ Bucket Name: As the name suggests, we need to enter the name of the
bucket we are creating. For the creation of the first bucket, name
it sender-bucket and name the second bucket receiver-bucket.

e Region: This is an AWS region we want the bucket to reside in. You
can use the default region for this or the region closest to wherever you
are located.

e Copy settings from an existing bucket: This specifies whether we
want to use the same settings as in some other bucket in the console for
this bucket too. As we do not currently have any other bucket in our
console, we can skip this setting by leaving it empty. After this, you
can click on the Next button in the bottom-right part of the popup.

7. Once we click Next, we get redirected to the second tab of the popup, which is
the Set properties menu and looks like this:

Create bucket

@ Name and region @ Set properties @ Set permissions @ Review

Versioning Server access logging

Keep multiple versions of an object in Set up access log records that provide
the same bucket. details about access requests.

Learn more Learn more

Tags Object-level logging

Use tags to track your cost against Record object-level API activity using
projects or other criteria. the CloudTrail data events feature

(additional cost).
Learn more Learn more

[531]

Setting Up Serverless Architectures Chapter 3

8. In this part of the popup, we need to decide on the following settings:
¢ Versioning: This is relevant if we want to keep multiple versions of the
files in the S3 bucket. This setting is required when you need a Git style
versioning for your S3 bucket. Note that the storage cost would be
included in line with the number of versioned documents.

e Server access logging: This will log all the access requests to the S3
bucket. This helps debug any security breaches and secure the S3
bucket and the files.

e Tags: This will tag the bucket using a Name:Value style, the same style
of tagging as we learned for Lambda functions.

¢ Object-level logging: This will use the CloudTrail service of AWS to
log all the access requests and other details and activities on the S3
bucket. This will also include CloudTrail costs too. So, use this feature
only if you need detailed logging. We shall skip using this for this
section.

9. After finishing creating the buckets, the S3 console will look like this, with both
the created buckets listed:

* Amazon S3 Discover the new console Quick tips
‘ Q Search for buckets
+ Create bucket 2 Buckets 1 Regions <
Bucket name Region Date created
© receiver-bucket US East (N. Virginia) Nov 6, 2017 7:49:29 AM
© sender-bucket US East (N. Virginia) Nov 6, 2017 7:49:18 AM

10. We have successfully created S3 buckets for our task. Now, we have to create a
Lambda function that can recognize an object upload in the sender-bucket
bucket and send that file to the receiver-bucket bucket.

[54]

Setting Up Serverless Architectures

Chapter 3

11. While creating the Lambda function, this time choose the s3-get-object-python
blueprint from the listed options available:

Lambda Functions Create function

Blueprints info

Q Add filter

keyword : s3 ®

splunk-elb-application-access-logs-processor

Stream Application ELB access logs from S3 to Splunk's HTTP event
collector

nodejs6.10 - splunk - elb - s3 - application-elb

rekognition-python

An Amazon S3 trigger that uses rekognition APIs to detect faces

python2.7 - rekognition - s3

s3-get-object-python

An Amazon S3 trigger that retrieves metadata for the object that has
been updated.

python2.7 - s3

s3-get-object

An Amazon S3 trigger that retrieves metadata for the object that has
been updated.

nodejs6.10 - s3

splunk-elb-classic-access-logs-processor
Stream Classic ELB access logs from S3 to Splunk's HTTP event

s3-get-object-python3

An Amazon S3 trigger that retrieves metadata for the object that has

[55]

Setting Up Serverless Architectures

Chapter 3

12. Configure the bucket details in the next step. In the Bucket section, select the
sender-bucket bucket and select the Object Created (All) option in the Event
type action. This is because we want to send a notification to Lambda whenever
an object gets created in the sender-bucket bucket. The completed part of the

section will look like this:

s3

Bucket

Please select the S3 bucket that serves as the event source. The bucket must be in the same region as the function
sender-bucket v

Event type

Select the events that you want to have trigger the Lambda function. You can optionally set up a prefix or suffix for an
event. However, for each bucket, individual events cannot have multiple configurations with overlapping prefixes or
suffixes that could match the same object key.

Object Created (All) v
Prefix

Enter an optional prefix to limit the notifications to objects with keys that start with matching characters.

Suffix

Enter an optional suffix to limit the notifications to objects with keys that end with matching characters.

Remove

Lambda will add the necessary permissions for Amazon S3 to invoke your Lambda function from this trigger. Learn more about the Lambda

permissions model.

[56]

Setting Up Serverless Architectures Chapter 3

13. Once you have enabled the trigger, Lambda helps you by creating a boilerplate
code for the task. All we need to do is write the code to put the object into the
receiver-bucket bucket. The boilerplate code can be seen in the Lambda
function code section:

Lambda function code
Code is pre-configured by the chosen blueprint. You can configure it after you create the function.

Runtime
Python 2.7

__future__ print_function
json
urllib
boto3

('Loading function')

s3 = boto3.client('s3")

lambda_handler(event, context):

bucket = event['Records'][@]["'s3']['bucket']["name']
key = urllib.unquote_plus(event['Records'][@]['s3"']J['object']["'key'].encode(utf8'))
response = s3.get_object(Bucket=bucket, Key=key)
("CONTEN YPE response['ContentType'])
response['ContentType']
Exception e:

©)

('E ' gett g {} fre) ket {} Make

e

NNNNNNNRPRRRRRRR R R
QURUWNROORXNOAOUAWNROOOONDNUD WN K
“ « ‘

[57]

Setting Up Serverless Architectures Chapter 3

14. When this step has been completed and you have clicked the Create function
button, you can see the Triggers section of the Lambda console, which displays a
success message in green at the top:

Test_Lambda | Qualifiers v H Actions ¥ TestEvent v m

© Congratulations! Your Lambda function "Test-Lambda" has been successfully created and configured with sender-bucket as a trigger. You can X
now click on the "Test" button to input a test event and test your function.

Configuration Triggers Monitoring

* S3: sender-bucket m

arn:aws:s3::sender-bucket
Event type: ObjectCreated Notification name: ce0c87d7-d4e2-42ca-ade2-2bcc3eb77797

+ Add trigger C Refresh triggers

» View function policy

15. T have uploaded a small image file into the sender-bucket bucket. So, now the
contents of the sender-bucket bucket look like this:

Amazon S3 > sender-bucket

Overview Properties Permissions Management
_ Public

‘ Q, Type a prefix and press Enter to search. Press ESC to clear.

Viewing 1to 1
[] Name 7= Last modified 1= Size 1= Storage class -
[] [@ DPjpg Nov 6, 2017 8:28:17 AM 147.1 KB Standard

Viewing 1to 1

[581]

Setting Up Serverless Architectures Chapter 3

16. As soon as this file had been uploaded, the Lambda function got triggered. The
Lambda function code looks like this:

from __future__ import print_function

import json

import urllib

import boto3

from botocore.client import Config

print ('Loading function')
sts_client = boto3.client ('sts', use_ssl=True)

Assume a Role for temporary credentials

assumedRoleObject = sts_client.assume_role (
RoleArn="arn:aws:iam::080983167913:role/service-role/Pycontw-
Role",

RoleSessionName="AssumeRoleSessionl"

)
credentials = assumedRoleObject['Credentials']
region = 'us-east-1'

def lambda_handler (event, context):
#print ("Received event: " + json.dumps (event, indent=2))

Get the object from the event and show its content type

bucket = event['Records'][0]['s3']['bucket']['name']

key = urllib.unquote_plus (event['Records'] [0]['s3"']
['object'] ['key'].encode ('utf8'))

try:

Creates a session

session = boto3.Session(credentials|['AccessKeyId'],
credentials|['SecretAccessKey'] ,
aws_session_token=credentials|['SessionToken'],
region_name=region)

#Instantiates an S3 resource
s3 = session.resource('s3',
config=Config(signature_version='s3v4'), use_ssl=True)

#Instantiates an S3 client
client = session.client('s3',
config=Config(signature_version='s3v4'), use_ssl=True)

Gets the list of objects of a bucket
response = client.list_objects (Bucket=bucket)

[59]

Setting Up Serverless Architectures Chapter 3

destination_bucket = 'receiver-bucket'
source_bucket = 'sender-bucket'

Adding all the file names in the S3 bucket in an

array
keys = []
if 'Contents' in response:
for item in response['Contents']:
keys.append(item['Key']);
Add all the files in the bucket into the receiver
bucket

for key in keys:
path = source_bucket + '/' + key
print (key)
s3.0bject (destination_bucket,
key) .copy_from(CopySource=path)

Exception as e:
print (e)
print ('Error getting object {} from bucket {}. Make sure they
exist and your bucket is in the same region as this
function.'.format (key, bucket))
raise e

17. Now, when you run the Lambda function, you can see the same file in the
receiver-bucket bucket:

Amazon S3 > receiver-bucket

Overview Properties Permissions Management
~ Public

’ Q, Type a prefix and press Enter to search. Press ESC to clear.

Viewing 1 to 1
[[] Name 7= Last modified 7= Size 1= Storage class 1=
[J [DPjpg Nov 7, 2017 8:21:10 AM 147.1KB Standard
Viewing 1to 1

[60]

Setting Up Serverless Architectures Chapter 3

SNS trigger

The SNS notification service can be used across multiple use cases, one of which involves

triggering Lambda functions. The SNS trigger is popularly used as an interface between the
AWS CloudWatch service and Lambda.

So, in this section, we will do the following:

1. Create an SNS topic

2. Create a CloudWatch alarm for our receiver-bucket bucket to monitor the
number of objects in the bucket

3. Once the objects count reaches 5, the alarm will be set to ALERT and the
corresponding notification will be sent to the SNS topic that we have just created

4. This SNS topic will then trigger a Lambda function, which prints out a Hello
World message for us

This will help you understand how to monitor different AWS services and set up alarms for
some thresholds for those metrics. And depending on whether the service's metrics have hit
that threshold or not, the Lambda function will get triggered.

The process flow for this is as follows:

1. SNS topics can be created from the SNS dashboard. By clicking on the Create

topic option, you will be redirected to the topic creation dashboard of SNS. The
SNS dashboard of AWS looks like this:

SNS dashboard SNS dash board

Topics

Applications Common actions Resources

Subscriptions

Text messaging (SMS) < You are using the following Amazon SNS resources in the us-east-1

region:
Topic

1
L Subscriptions 0
Create platform appl_lcatlon)) Applications 0
Create a platform application for mobile devices
Endpoints 0
O Create subscription
Subscribe an endpoint to a topic to receive messages published to .
that topic More info
Ql Publish message Getting started
Publish a message to a topic or as a direct publish to a platform Documentation
endpoint
API reference
Q Publish text message (SMS) Forums
Publish a text message to a phone number Service health

[61]

Setting Up Serverless Architectures

The SNS topic creation wizard in the next step looks like this:

Create new topic

A topic name will be used to create a permanent unique identifier called an Amazon Resource Name (ARN).

Topic name Enter topic name

Display name Enter topic display name. Required for topics with SMS subscriptions

Cancel

In this creation wizard, you can name the SNS topic that you are creating, and add

any meta information you want to.

2. Once the topic is created, you can view it in the Topics menu, which is on the left

of your SNS dashboard. The button looks like this:

| SNS dashboard

Applications
Subscriptions

Text messaging (SMS)

[62]

Setting Up Serverless Architectures Chapter 3

Upon clicking the Topics tab, a list of topics will be displayed, as shown in
the following screenshot:

Topics
Create new topic Actions ~ = (7]
Filter
Name ARN
Packt-Topic arn:aws:sns:us-east-1: :Packt-Topic

3. Now that we have successfully created an SNS topic, we shall create a
CloudWatch alarm to monitor our S3 bucket for files. The AWS CloudWatch
dashboard looks something like this:

[63]

Setting Up Serverless Architectures Chapter 3

CloudWatch : i
I Metric Summary Additional Info
Dashboards ‘ '
Alarms Amazon CloudWatch monitors operational and performance metrics for your AWS cloud resources and applications. Getting Started Guide
You currently have 62 CloudWatch metrics available in the US East (N. Virginia) region. Monitoring Scripts Guide
. . . Overview and Features
Browse or search your metrics to get started graphing data and creating alarms.
Documentation
i Q Search Metrics X Forums
N
9 Report an Issue
Events
Rules
Alarm Summary c
Event Buses
Logs YYou do not have any alarms created in the US East (N. Virginia) region. Alarms allow you to send notifications or execute AutoScaling Create Alarm
Metrics actions in response to any CloudWatch metric.
. ‘You can now use Amazon CloudWatch alarms to monitor the estimated charges on your AWS bill and receive email alerts whenever
Favorites charges exceed a threshold you define.
©Add a dashboard You can set up billing alarms to receive e-mail alerts when your AWS charges exceed a threshold you choose. To get started, visit the
Account Billing console, click Preferences in the left navigation pane and check the Receive Billing Alerts box, then return here to the
CloudWatch console.
Service Health (&
Current Status Details
@ Amazon CloudWatch Service Service is operating normally
> View complete service health details
4. Now, we can go to the Alarms page by clicking the Alarms button in the list on
the left of the dashboard. The AWS Alarms page of looks like this:
CloudWatch Aot Q% 0
Dashboards
Filter: Allalarms v Q Search Alarms X Hide all AutoScaling alarms @
| Alarms
State ~ Name ~ Threshold ~ Config Status v
No records found.
Billing
Events
Rules

Event Buses
Logs
Metrics

Favorites

©Add a dashboard

0 Alarms selected |_ =]

Select an alarm above

[64]

Setting Up Serverless Architectures Chapter 3

5. Next, click on Create Alarm to create an alarm. This will open an alarm creation
wizard with multiple options. The wizard looks like this, depending on the
services running in your AWS ecosystem:

Create Alarm X

1. Select Metric 2. Define Alarm

Browse Metrics v (Q Search Metrics X

CloudWatch Metrics by Category

Your CloudWatch metric summary has loaded. Total metrics: 62

EBS Metrics: 18 EC2 Metrics: 24 Lambda Metrics: 12
Per-Volume Metrics: 18 Per-Instance Metrics: 24 Across All Functions: 4
By Function Name: 4
By Resource: 4

Logs Metrics: 4 S3 Metrics: 4

Account Metrics: 2 Storage Metrics: 4
Log Group Metrics: 2

s J et

[65]

Setting Up Serverless Architectures

Chapter 3

6. As we intend to create an alarm for our S3 bucket, we can go to the S3
Metrics tab and ignore the rest of the available metrics. If you click on the

Storage Metrics option in the S3 Metrics category, you will be re-directed to
another alarm creation wizard that looks like the following, depending on the

number of buckets you have in your S3:

Create Alarm

1. Select Metric 2. Define Alarm

S3 v Q Search Metrics X 10 4 of 4 metrics
Storage Metrics %
S3 > Storage Metrics

BucketName ~ StorageType ~ Metric Name

receiver-bucket AllStorageTypes NumberOfObjects

receiver-bucket StandardStorage BucketSizeBytes

sender-bucket AliStorageTypes NumberOfObjects

sender-bucket StandardStorage BucketSizeBytes

_N=n

¥ Time Range

Relative || Absolute | UTC (GMT)

a
v

From: 12.01 | hoursago %
To: 0 hoursago %

Zoom: 1h|3h|6h|12h|1d|3d | 1w |2w

cancel m

[66]

Setting Up Serverless Architectures Chapter 3

7. If you observe the options in the Metric Name column, you will see two options
available for each bucket: NumberOfObjects and BucketSizeBytes. They are
self-explanatory and we will only need the NumberOfObjects option for the
receiver-bucket bucket. So, select that option and click Next:

Create Alarm X

1. Select Metric 2. Define Alarm

S3 v Q Search Metrics X 110 1 of 1 metrics

Storage Metrics

Searching for S3 > Storage Metrics...())

83 > Storage Metrics

BucketName v StorageType ~ Metric Name v
receiver-bucket AlIStorageTypes NumberOfObjects
Title: NumberOfObjects ¢ Average v 1Day v Update Graph _ =
¥ Time Range
2.00 Count
Relative ‘ Absolute UTC (GMT) i
1.00

From: 3.67 | daysago &

To: 0 daysago ¥
11/09 11/09 11/10 11/10 11/11 11/11 11/12

@ NumberOfObjects Zoom: 1h|3h|6h|12h|1d|3d | 1w |2w

[67]

Setting Up Serverless Architectures

Chapter 3

This will take you to the alarm definition wizard, where you need to specify the
details of the SNS topic and the threshold for the alarm. The wizard looks like

this:

Create Alarm

1. Select Metric 2. Define Alarm

Alarm Threshold

Provide the details and threshold for your alarm. Use the graph on the right to help set the

appropriate threshold.
Name:

Description:

Whenever: NumberOfObjects
ist | >=40

for: 4 consecutive period(s)

Additional settings

Provide additional configuration for your alarm.
Treat missing data as: = missing

Actions
Define what actions are taken when your alarm changes state.

Notification

«»

Alarm Preview

This alarm will trigger when the blue line goes up
to or above the red line for a duration of 1 day

NumberOfObjects >= 0

1.25
1
0.75
0.5
0.25
11/07 11/09 1111
00:00 00:00 00:00
Namespace: AWS/S3
BucketName: | recejver-bucket
StorageType: | A||StorageTypes
Metric Name: NumberOfObjects
Period: = 1 Dpay :
Statistic: @ Standard Custom
Average e
Delete

[68]

Setting Up Serverless Architectures

Chapter 3

8. Add in the details for the threshold and the name of the alarm. The threshold is
five files, which means that the alarm will be triggered as soon as the number of
files in the corresponding bucket (receiver-bucket in our case) reaches a total

of five. The wizard looks like this:

Create Alarm

1. Select Metric

Alarm Threshold

Provide the details and threshold for your alarm. Use the graph on the right to help set the
appropriate threshold.

2. Define Alarm

Name: packt-Test

Description: | Ajarm for monitoring number of objects in b

Whenever: NumberOfObjects
is: | >=4 5

for: 1 consecutive period(s)

Additional settings

Provide additional configuration for your alarm.

Treat missing data as:

e

missing

Actions
Define what actions are taken when your alarm changes state.

Notification

Alarm Preview

This alarm will trigger when the blue line goes up
to or above the red line for a duration of 1 day

NumberOfObjects >= 5

6
5
4
3
2
1
0
11/07 11/09 1111
00:00 00:00 00:00
Namespace: AWS/S3
BucketName: | receiver-bucket
StorageType: A||StorageTypes
Metric Name: NumberOfObjects
Period: = 1Dpay s
Statistic: @ Standard Custom
Average v

Delete

Cancel Previous

9. In the Actions option, we can configure the alarm to send the notification to the
SNS topic that we have just created. You can select the topic from the drop-down

list, as follows:

[69]

Setting Up Serverless Architectures Chapter 3

Create Alarm X

1. Select Metric 2. Define Alarm

vescription: | Alarm for monitoring number of objects in b

5
4
3
Whenever: NumberOfObjects 2
is: [>=4|5 ;
. .) 11/07 11/09 1111
for: 4 consecutive period(s) 00:00 00:00 00:00

Namespace: AWS/S3

Additional settings BucketName: | receiver-bucket
Provide additional configuration for your alarm. StorageType: | A||StorageTypes
Treat missing data as: | missing i) Metric Name: | NumberOfObjects
Period: = 1Dpay 4
Actions Statistic: @ Standard ~ Custom
Define what actions are taken when your alarm changes state. Average s
Notification Delete
Whenever this alarm: | State is ALARM v
Send notification to: v Select a notification list &) New list Enter list €

Packt-Topic

+ Notification + AutoScaling Action

10. Once we have configured the SNS topic, we can click on the blue Create
Alarm button at the bottom. This will create the alarm that is linked to the SNS
topic as a notification pipeline. The created alarm will look like this on the
dashboard:

CloudWatch -
Dashboards &/ Youralarm Packt-Test has been saved.
| Alarms <
-
AT Q search Alarms X Hide all AutoScaling alarms @ e

o ° e | Hame 7 Theeshold - Config Status

aiing OK Packt-Test NumberOfObjects >= 5 for 1 day No notifications
Events

Rules

Event Buses
Logs
Metrics
Favorites
©Add a dashboard

0 Alarms selected _ N ==]

Select an alarm above

[70]

Setting Up Serverless Architectures Chapter 3

11. Now, we can move on to building the Lambda function for the task. For this
particular task, use the sns-message-python blueprint while creating our
Lambda function:

Lambda Functions Create function

I Q, Add filter ® |

keyword : sns ®

1

sns-message sns-message-python

An Amazon SNS trigger that logs the message pushed to the SNS An Amazon SNS trigger that logs the message pushed to the SNS
topic. topic.

nodejs - sns python2.7 - sns

step-functions-send-to-sns (preview)
Sends an SNS message from input JSON

python - sns - step-functions

Cancel

[71]

Setting Up Serverless Architectures Chapter 3

11. In the previous step, when you have selected the blueprint, you will be asked to
enter some meta information regarding your Lambda function, just like we did
previously while creating Lambda functions. In the same wizard, you will also be
asked to mention the name of the SNS topic. You can specify it here:

SNS topic

Select the SNS topic to subscribe to

Lambda will add the necessary permissions for Amazon SNS to invoke your Lambda function from this trigger. Learn more about the Lambda
permissions model.

Enable trigger

Enable the trigger now, or create it in a disabled state for testing (recommended)

Lambda function code

Code is pre-configured by the chosen blueprint. You can configure it after you create the function.

Runtime
Python 2.7

[72]

Setting Up Serverless Architectures Chapter 3

12. Now that we have selected all the options for the Lambda function correctly, we
can now go on to the code. The desired code will look like this:

Code entry type Runtime Handler Info

Edit code inline v Python 2.7 v lambda_function.lambda_handler

lambda_function.py

1 from __future__ import print_function

2

3 import json

4

5 print('Loading function')

6

7

8 - def lambda_handler(event, context):

9 #print("Received event: " + json.dumps(event, indent=2))
10 message = event[]'Records'][0]['Sns']['Message']
11 print("From SNS: " + message)

12 print('Hello World')

13 return message

14

The preceding code will display a Hello World message whenever the Lambda
function gets triggered. This we have completed the setup for this task.

13. To test the preceding setup, you can simply upload more than five files to your
receiver-bucket bucket and check for Lambda function's execution.

[73]

Setting Up Serverless Architectures Chapter 3

SQS trigger

The AWS Simple Queue Service (SQS) is the AWS queue service. This service is similar to
the queuing mechanisms that are used generally in software engineering. This enables us to
add, store, and remove messages inside the queue.

We will learn how to trigger a Lambda function, depending on the number of messages in a
SQS queue. This task will help you understand how serverless batch data architectures can
be built and how to build one yourself.

We will do this by monitoring our SQS queue with a CloudWatch alarm and relaying the
information to Lambda via an SNS topic, just like we did in the previous task.

So, in this section, we will do the following:

1. Create an SQS queue

2. Create an SNS topic

3. Create a CloudWatch alarm for our SQS queue to monitor the number of
messages in the queue

4. Once the messages count reaches 5, the alarm will be set to ALERT and the
corresponding notification will be sent to the SNS topic we have just created

5. This SNS topic will then trigger a Lambda function, which prints out a Hello
World message for us

This will help you understand how to monitor queues and build efficient serverless data
architectures that are batched, instead of in real time.

[74]

Setting Up Serverless Architectures Chapter 3

The process flow for this is as follows:

1. We will start by creating an AWS SQS queue. We need to go to the SQS
dashboard of our AWS account. The dashboard looks like this:

—

Simple Queue Service

Amazon Simple Queue Service (SQS) is a reliable, scalable, fully-managed message queuing service.

Get Started Now

Learn more about AWS SQS

[] O
i A -
\m | 0

Ensure high availability Scale with your business Reduce your cost
Amazon SQS uses a distributed architecture within Amazon SQS enables an unlimited number of services to Amazon SQS is a fully-managed service, with no up-front
Amazon's high-availability data centers, so queues will be read and write an unlimited number of messages at any costs or fixed expenses. Pay only for what you use, with a
available whenever applications need them. To prevent time. Amazon SQS is used by some of the most highly- small charge for each API request and data transfer.
messages from being lost, all messages are stored scaled applications in the world, such as Netflix.

redundantlv across multiple servers and data centers.

2. Click on the Get Started Now button to create an SQS queue. It will redirect you
to the queue creation wizard, where you need to enter details such as the name,
type of queue, and so on. The queue creation wizard looks like this:

[75]

Setting Up Serverless Architectures

Chapter 3

Create New Queue

What do you want to name your queue?

Queue Name €@
Type the queue name.

Region € US East (N. Virginia)

What type of queue do you need?

Standard Queue

High Throughput: Standard queues have nearly-unlimited transactions per second (TPS).
At-Least-Once Delivery: A message is delivered at least once, but occasionally more than one
copy of a message is delivered.

Best-Effort Ordering: Occasionally, messages might be delivered in an order different from which
they were sent.

FIFO Queue

First-In-First-out Delivery: The order in which messages are sent and received is strictly
preserved.

Exactly-Once Processing: A message is delivered once and remains available until a consumer
processes and deletes it. Duplicates are not introduced into the queue.

Limited Throughput: Without batching, FIFO queues can support up to 300 messages per
second (300 i or D ions per second). If you
take advantage of the maximum batching of 10 messages per operation, FIFO queues can

3. You can enter the name of the queue in Queue Name. In the What type of
queue do you need? option, select the Standard Queue option. In the options at
the bottom, select the blue Quick-Create Queue option:

* Allocate tasks to multiple worker nodes: process a high number of credit card validation
requests.

* Batch messages for future processing: schedule multiple entries to be added to a database.

* Display the correct product price by sending price modifications in the right order.

* Prevent a student from enrolling in a course before registering for an account.

For more information, see the Amazon SQS FAQs and the Amazon SQS Developer Guide.

To create a new queue, choose Quick-Create Queue. To configure your queue's parameters, choose Configure Queue.

Cancel Configure Queue Quick-Create Queue

[76]

Setting Up Serverless Architectures Chapter 3

The Configure Queue option is for advanced settings. It is not necessary to tweak
those settings for this task. This is what the advanced settings look like:

Queue Attributes
Default Visibility Timeout € | 30 seconds ¥ | yvajue must be between 0 seconds and 12 hours.
Message Retention Period €@ 4 days ¥ | Value must be between 1 minute and 14 days
Maximum Message Size € 256 KB Value must be between 1 and 256 KB.
Delivery Delay € 0 seconds ¥ | yajue must be between 0 seconds and 15 minutes
Receive Message Wait Time €@ 0 seconds Value must be between 0 and 20 seconds

Dead Letter Queue Settings
Use Redrive Policy €

Dead Letter Queue € Value must be an existing queue name.

Maximum Receives € Value must be between 1 and 1000.

Server-Side Encryption (SSE) Settings

Use SSE €

AWS KMS Customer Master Key (CMK) (i) :

Data Key Reuse Period (i) v This value must be between 1 minute and 24 hours.

5. Once you have created the queue, you will be taken to the SQS page, where all
the queues that you have created are listed similarly to the SNS list. This page
looks like this:

[77]

Setting Up Serverless Architectures

Chapter 3

Details Permissions

Delivery Delay:

Content-Based Deduplication:

Created:
Last Updated:

Queue Type:

Redrive Policy Monitoring Tags Encryption
Name: Packt-Test
URL: https://sqs.us-east-1.amazonaws.com/ Packt-Test
ARN: am:aws:sqs:us-east-1: Packt-Test

2017-11-13 08:19:47 GMT+05:30
2017-11-13 08:19:47 GMT+05:30
: 0 seconds

Standard

N/A

Default Visibility Timeout: 30 seconds
Message Retention Period: 4 days
Maximum Message Size: 256 KB
Receive Message Wait Time: 0 seconds
Messages Available (Visible): 0
Messages in Flight (Not Visible): 0
Messages Delayed: 0

c %
Filter by Prefix: Q Enter Text... X 1to1of 1items
a8 Name ~ Queue Type Content-Based D ication - Available - in Flight- Created
@ Packt-Test Standard N/A 0 [2017-11-13 08:19:47 GMT+05:30
1SQS Queue selected [_N =N =]

6. As we have already created an SNS topic in the previous task, we will use the
same topic for this purpose. If you haven't created an SNS topic, you can refer to

the previous task for instructions on how to create one. The list of SNS topics
looks like this:

SNS dashboard « Topics
| Topics
. A ~
Applications Create new topic Actions o [~}
Subscriptions
Filt
Text messaging (SMS) Her
Name ARN
Packt-Topic arn:aws:sns:us-east-1: :Packt-Topic
Total ltems: 1
Selected ltems: 0

[78]

Setting Up Serverless Architectures Chapter 3

7. Now, we will go to the CloudWatch dashboard to create an alarm to monitor our
SQS queue and send a notification to Lambda via the SNS topic that we have

already created. We can now see the SQS queue metrics in the alarm creation
wizard:

Create Alarm

1. Select Metric 2. Define Alarm

Browse Metrics | v (Q Search Metrics X

CloudWatch Metrics by Category

Your CloudWatch metric summary has loaded. Total metrics: 71

EBS Metrics: 18 EC2 Metrics: 24

Per-Volume Metrics: 18

Lambda Metrics: 12

Per-Instance Metrics : 24 Across All Functions: 4

By Function Name: 4
By Resource: 4

Logs Metrics: 4 S3 Metrics: 4 SQS Metrics: 9

Account Metrics : 2

Storage Metrics: 4
Log Group Metrics: 2

Queue Metrics: 9

Cancel m

8. By clicking on the Queue Metrics option under SQS Metrics, we will be taken to

the page where all queue metrics are listed, and we need to select one of them for
our alarm:

[79]

Setting Up Serverless Architectures Chapter 3

Create Alarm X

1. Select Metric 2. Define Alarm

sQs v Q Search Metrics X 1109 of 9 metrics

Queue Metrics %

SQS > Queue Metrics

QueueName ~ Metric Name =
Packt-Test ApproximateAgeOfOldestMessage
Packt-Test ApproximateNumberOfMessagesDelayed
Packt-Test ApproximateNumberOfMessagesNotVisible
Packt-Test
1 Packt-Test NumberOfEmptyReceives
Packt-Test NumberOfMessagesDeleted
Packt-Test NumberOfMessagesReceived
Packt-Test NumberOfMessagesSent
Packt-Test SentMessageSize

¥ Time Range

| Relative || Absolute | UTC (GMT) D

‘ From: | 12.04| hoursago +% ‘

9. Here, we are interested in the ApproximateNumberOfMessagesVisible metric,
which gives the number of messages in the queue. It says Approximate, as SQS is
a distributed queue and the number of messages can only be determined
stochastically.

[80]

Setting Up Serverless Architectures

Chapter 3

10. In the next page, after selecting the
ApproximateNumberOfMessagesVisible metric from the list, the necessary
settings can be configured as we did for the S3 Metrics in the previous task. The

page should look like this:

Create Alarm

1. Select Metric 2. Define Alarm

Alarm Threshold

Provide the details and threshold for your alarm. Use the graph on the right to help set the

appropriate threshold.

Name: psckt-SQSLambda

Description: | Ajarm for monitoring SQS for Lambda

Whenever: ApproximateNumberOfMessagesVisible

is: | >=4 5|

for: 1 consecutive period(s)

Additional settings

Provide additional configuration for your alarm.

Treat missing data as: | missing

Actions
Define what actions are taken when your alarm changes state.

Notification

Alarm Preview

This alarm will trigger when the blue line goes up
to or above the red line for a duration of 5
minutes

ApproximateNumberOfMessagesVisible >= 0

1.25

1
0.75

0.5
0.25

1114 11/14 11714
00:00 01:00 02:00

Namespace: AWS/SQS

QueueName: pgckt-Test

Metric Name: ApproximateNumberO

Period: | 5 Minutes %

Statistic: @ Standard Custom

Average s

Delete

Cancel | Previous Create Alarm

[81]

Setting Up Serverless Architectures Chapter 3

11. In the Actions section, configure the SNS topic to which we want to send our
notification. This step is also similar to how we configured the SNS topic in the
previous task:

Create Alarm X

1. Select Metric 2. Define Alarm

5
4
Whenever: ApproximateNumberOfMessagesVisible 3
i 2
is: =4
> 5 ;
. . . 0
for: 1 consecutive period(s) 1114 1114 11M4

00:00 01:00 02:00

Namespace: AWS/SQS

Additional settings

Provide additional configuration for your alarm.

QueueName: packt-Test

Metric Name: ApproximateNumberO

Treat missing dataas: = missing OO i
Period: = 5 Minutes 4
Actions Statistic: @ Standard Custom
Define what actions are taken when your alarm changes state. Average v
Notification Delete
Whenever this alarm: = State is ALARM v
Send notification to: | Packt-Topic 4| Newlist Enterlist €
This notification list is managed in the SNS console.
+ Notification + AutoScaling Action
Cancel | Previous Create Alarm

[82]

Setting Up Serverless Architectures Chapter 3

12. Once you are satisfied with the metadata and the settings you have configured
for the alarm, you can click the blue Create Alarm button on the bottom-right
side of the screen. That will successfully create an alarm that monitors your SQS
queue and sends a notification to the SNS topic that you have configured:

CloudWatch x
V Your alarm Packt-SQSLambda has been saved.
Dashboards
Alarms]
Add to Dashboard Actions v S %0
INSUFFICIENT o Filter: Allalarms v Q Search Alarms X Hide all AutoScaling alarms @ 1to 2 0f 2alarms
OK o State ~ Name ~ Threshold - Config Status
Biling INSUFFICIENT_DATA Packt-SQSLambda pproxi imberO isible >= 5 for 5 minutes
Events OK Packt-Test NumberOfObjects >= 5 for 1 day
Rules
Event Buses
Logs
Metrics
Favorites
©Add a dashboard
1 Alarm selected _ =]

Alarm:Packt-SQSLambda
Details History

State Details: State changed to INSUFFICIENT DATA at 2017/11/14. Reason: Unchecked: Initial alarm

(® Packt-SQSLambda
creation ApproximateNumberOfMessagesVisible >= 5

Description: Alarm for monitoring SQS for Lambda

Tl pproxi umberOf ible >= 5 for 5 minutes

Actions: In ALARM: « Send message to topic "Packt-Topic"
Namespace: AWS/SQS

Mw s oo

13. We can use the Lambda function that we created in the previous task. Make sure

the trigger is the SNS topic that we are using to configure the notification system
of the alarm:

AWS Lambda X Lambda Functions Lambda-SNS ARN - arn:aws:lambda:us-east-1: function:Lambda-SNS
Dashboard Lambda_SNs | Qualifiers v || Actions v H Save | Select a test event.. v m
Functions

Configuration Triggers Monitoring

lll SNS: Packt-Topic m

arn:aws:sns:us-east-1 Packt-Topic

-+ Add trigger C Refresh triggers

» View function policy

[83]

Setting Up Serverless Architectures Chapter 3

14. The Lambda function code for this task is as follows:

from ___future__ import print_function
import json

print ('Loading function')

def lambda_handler (event, context):

#print ("Received event: " + Json.dumps (event, indent=2))
message = event['Records'][0]['Sns'] ['Message']
print ("From SNS: " + message)

print ('Hello World')
return message

CloudWatch trigger

CloudWatch is the logging and monitoring service for AWS, where logs from most services
get stored and monitored. In this section, we will learn how CloudWatch trigger works,
how CloudWatch querying works in practice, configuring this in the Lambda function, and
also how to make use of this knowledge to build a Lambda function.

So, in this section, we will do the following:

1. Create a CloudWatch log
2. Briefly understand how a CloudWatch log works
3. Create a Lambda function that gets triggered by the CloudWatch trigger

This will help you understand and build resilient and stable serverless architectures.

[84]

Setting Up Serverless Architectures

Chapter 3

The process flow for this is as follows:

1. To create a CloudWatch Logs group, click on the Logs option to the left of the
CloudWatch console:

CloudWatch : e
l Metric Summary Additional Info
Dashboards X X
Alarms 4 Amazon CloudWatch monitors operational and performance metrics for your AWS cloud resources and applications. Getting Started Guide
You currently have 71 CloudWatch metrics available in the US East (N. Virginia) region. Monitoring Scripts Guide
. . . Overview and Features
Browse or search your metrics to get started graphing data and creating alarms.
Documentation
oK 2] .
| Q Search Metrics X Forums
Billing
9 Report an Issue
Events
Rules
Alarm Summary (&
Event Buses
Logs All your alarms are in OK state in US East (N. Virginia) region. Create Alarm
Metrics You can set up billing alarms to receive e-mail alerts when your AWS charges exceed a threshold you choose. To get started, visit the
Account Billing console, click Preferences in the left navigation pane and check the Receive Billing Alerts box, then return here to the
Favorites CloudWatch console.
©Add a dashboard Packt-SQSLambda Packt-Test
ApproximateNumberOfMessagesVi o NumberOfObjects >= 5
6 6
4 4
2 2
0 0
11715 11115 11/15 1110 11712 11/14
14:00 15:00 16:00 00:00 00:00 00:00
Service Health C
Current Status Details
2. Once you are on the AWS CloudWatch Logs page, you will see a list of log
groups that are already present. The CloudWatch Logs page looks something like
this:
CloudWatch CloudWatch Log Groups
Dashboards
Alarms 4 Actions v o & 9
Filter: |.og Group Name Prefix x Log Groups 1-2
OK 9 Log Groups Expire Events After Metric Filters Subscriptions
Billing /aws/batch/job Never Expire 0 filters None
Events /aws/lambda/Test-Lambda Never Expire 0 filters None
Rules
Event Buses
| Logs
Metrics
Favorites
©Add a dashboard

[85]

Setting Up Serverless Architectures Chapter 3

3. Let's go ahead and create a new CloudWatch log. You can see the option to create
a new log group from the Actions drop-down menu at the top:

CloudWatch CloudWatch Log Groups
Dashboards

Alarms <« | Actions v o & 9

Filter: | Log Group Na Log Groups 1-2

OK 2] Log Groups Metric Filters Subscriptions
Billing /aws/batch/job 0 filters None
Events /aws/lambda/Test- “ 0 filters None
Rules
Event Buses
| Logs

Metrics

Favorites

©Add a dashboard

4. In the next step, you will be asked to name the log group that you are creating.
Go ahead and enter the relevant information and click Create log group:

Create log group X

Log Group Name: Packt—Test|

[l Create log group

[86]

Setting Up Serverless Architectures Chapter 3

5. So, now we have a new log group listed in the list of log groups in our
CloudWatch console:

CloudWatch CloudWatch Log Groups
Dashboards
Alarms 4 Actions v o & 9
Filter: |Log Group Name Prefix x Log Groups 1-3
oK 9 Log Groups Expire Events After Metric Filters Subscriptions
Billing /aws/batch/job Never Expire 0 filters None
Events /aws/lambda/Test-Lambda Never Expire 0 filters None
Rules Packt-Test Never Expire 0 fitters None

Event Buses
| Logs
Metrics
Favorites

©Add a dashboard

6. Once the log group has been created, we can now start working on our Lambda

function. So, let's move on to the Lambda console and start creating a new

function.

7. From the blueprints, choose the cloudwatch-logs-process-data blueprint. The
description reads: A real-time consumer of log events ingested by an Amazon

CloudWatch Logs log group:

Blueprints info

Q Add filter

keyword : cloudwatch @ l

logicmonitor-send-cloudwatch-events

Creates LogicMonitor OpsNotes for CloudWatch Events, thereby
enabling correlation between events and performance data.

python - cloudwatch-events - monitoring - eventstream - ext-libraries

kinesis-firehose-cloudwatch-logs-processor

An Amazon Kinesis Firehose stream processor that extracts individual
log events from records sent by Cloudwatch Logs subscription filters.

nodejs6.10 - kinesis-firehose - cloudwatch-logs - splunk

sumologic-process-logs
Pushes CWL logs to SumoLogic.

nodejs - cloudwatch-logs - sumologic

sqs-poller

Periodically polls an SQS queue and asynchronously consumes each
message.

nodejs4.3 - sqs - cloudwatch-events

cloudwatch-logs-process-data

A real-time consumer of log events ingested by an Amazon
CloudWatch Logs log group.

nodejs - logs - cloudwatch

cloudwatch-alarm-to-slack

An Amazon SNS trigger that sends CloudWatch alarm notifications to
Slack.

nodejs - cloudwatch - slack

[87]

Setting Up Serverless Architectures Chapter 3

8. After selecting the corresponding blueprint option, you will be redirected to the
Lambda creation wizard, as usual:

Lambda Functions Create function Using blueprint cloudwatch-logs-process-data

Basic information info

Name*

Role*
Defines the permissions of your function. Note that new roles may not be available for a few minutes after creation. Learn more
about Lambda execution roles.

Choose an existing role v

Existing role*
You may use an existing role with this function. Note that the role must be assumable by Lambda and must have Cloudwatch
Logs permissions.

cloudwatch-logs

Log Group
Please select the CloudWatch Logs log group that serves as the event source. Log Events sent to the log group will trigger
your lambda function with the contents of the logs received.

/aws/batch/job v

[88]

Setting Up Serverless Architectures Chapter 3

9. Just as we did in the previous task, we will also enter relevant information about
the log name and other details in the cloudwatch-logs pane of the Lambda
creation panel:

cloudwatch-logs

Log Group
Please select the CloudWatch Logs log group that serves as the event source. Log Events sent to the log group will trigger
your lambda function with the contents of the logs received.

Packt-Test v

Filter Name
Choose a name for your filter.

Filter Pattern
Enter an optional Filter Pattern.

Lambda will add the necessary permissions for Amazon CloudWatch Logs to invoke your Lambda function from this trigger. Learn more about
the Lambda permissions model.

Enable trigger

Enable the trigger now, or create it in a disabled state for testing (recommended).

10. After clicking Create function, we will be directed to a Triggers page with the
success message.

[89]

Setting Up Serverless Architectures

Chapter 3

Lambda

Lambda-Cloudwatch

Functions Lambda-Cloudwatch ARN - arn:aws:lambda:us-east-1: :function:Lambda-Cloudwatch

Qualifiers v H Actions v

Select a test event.. v

© Congratulations! Your Lambda function "Lambda-Cloudwatch” has been successfully created and configured with Packt-Test as a trigger. You X
can now click on the "Test" button to input a test event and test your function.

~

Configuration Triggers Monitoring

CloudWatch Logs: Packt-Test

am:aws:logs:us-east-1: log-group:Packt-Test:*

Filter name: Packt-Test Filter pattern:

+ Add trigger C Refresh triggers

» View function policy

11. So, now we write the Lambda function code to identify the log group and
print Hello World message:

1
2
3
4
3
6
7
8
9
10
11
12
13
14
15
16
17
18

Configuration Triggers Monitoring

v Function code

Code entry type Runtime

Edit code inline v Python 2.7

lambda_function.py

import boto3
import logging
import json

logger = logging.getLogger()
logger.setLevel(logging.INFO)
- def lambda_handler(event, context):

#capturing the CloudWatch log data
LogEvent = str(event['awslogs']['data'])

#converting the log data from JSON into a dictionary
cleanEvent = json.loads(LogEvent)

print 'Hello World'
print cleanEvent['logEvents']

Handler Info

lambda_function.lambda_handler

[90]

Setting Up Serverless Architectures Chapter 3

12. We have now successfully completed another task where we understood how to
trigger a Lambda function via AWS CloudWatch Logs. The Lambda function
code for this task is as follows:

import boto3

import logging

import Jjson

logger = logging.getLogger ()
logger.setlLevel (logging.INFO)

def lambda_handler (event, context):
#capturing the CloudWatch log data

LogEvent = str(event['awslogs']['data'])
#converting the log data from JSON into a dictionary
cleanEvent = json.loads (LogEvent)

print 'Hello World'
print cleanEvent|['logEvents']

Summary

In this chapter, we have learned a great deal about how various Lambda triggers work, and
how to configure them, set up the triggers, and write Lambda function code to handle the
data from them.

In the first task, we learned how S3 events work and how to understand and receive events
from the S3 service to AWS Lambda. We have understood how to monitor S3 buckets for
file details via their metrics in CloudWatch and then send that notification via AWS SNS to
a Lambda functions.

We have also learned how to create SNS topics and how to use them as an intermediate
route between several metrics of AWS services from CloudWatch to AWS Lambda.

We have learned briefly about how AWS CloudWatch works. We understood what the
metrics of various AWS services, such as S3, SQS, and CloudWatch, look like. We also
learned how to set thresholds for CloudWatch Alarms, and how to connect those alarms to
notification services, such as AWS SNS.

[91]

Setting Up Serverless Architectures Chapter 3

We learned how AWS CloudWatch Logs work and how to connect and use the
CloudWatch trigger in Lambda so it's triggered whenever a new log event is
added/received. Overall, we have successfully created new AWS services, such as SQS,
CloudWatch Logs, SNS, and S3 buckets in this chapter, and successfully built and deployed
three serverless tasks/pipelines.

In the next chapter, we will learn how to build serverless APIs, on which we will perform
some tasks just like we did in this chapter, and get a hands-on understanding of how APIs
work and, most importantly, how serverless APIs work.

[92]

Deploying Serverless APls

So far, we have come a long way in our journey of learning about serverless applications
and building serverless engineering. We have learned what the serverless paradigm
actually is, how the AWS Lambda function works, understanding the internals of AWS
Lambda, along with a detailed understanding of how several triggers work. We have also
done several mini projects around experimenting with triggers and deploying them as end-
to-end serverless pipelines.

In this chapter, you will be learning how to build efficient and scalable serverless APIs,
using the AWS Lambda and AWS API Gateway services. We will start with understanding
how the API Gateway works, instead of diving directly to building the serverless APIL. After
that, we will understand how API Gateway and AWS Lambda integrate with each other.
And finally, we will be creating and deploying a fully functional serverless API, as part of
your learning from this chapter.

This chapter covers the following topics:
¢ API methods and resources
e Setting up integration
¢ Deploying the Lambda function for API execution
¢ Handling authentication and user controls

Deploying Serverless APIs Chapter 4

APl methods and resources

In this section, we will be learning about the API service of AWS, which is the API
Gateway, and understanding the components and settings available in the console for the
user who is creating APIs. We will go through all of the components and understand the
API Gateway better. The steps to create the serverless APIs are as follows:

1. We will start by opening the API Gateway console, which looks like this:

©

Amazon API Gateway

Amazon APl Gateway helps developers to create and manage APIs to back-end systems
running on Amazon EC2, AWS Lambda, or any publicly addressable web service. With
Amazon APl Gateway, you can generate custom client SDKs for your APIs, to connect your
back-end systems to mobile, web, and server applications or services.

Getting Started Guide

ali %

Streamline API development Performance at scale SDK generation
Amazon API Gateway lets you simultaneously run multiple Amazon API Gateway helps you improve performance by Amazon API Gateway can generate client SDKs for
versions and release stages of the same API, allowing you managing traffic to your existing back-end systems, JavaScript, iOS, and Android, which you can use to quickly
to quickly iterate, test, and release new versions. throttling API call spikes, and enabling result caching. test new APIs from your applications and distribute SDKs

2. In the API Gateway console, click on the Get Started button to start creating an
APIL. It will take you to an API creation wizard with a popup saying Create
Example API:

[94]

Deploying Serverless APIs Chapter 4

Create Example API

Welcome to Amazon API Gateway. To create your first API, we have pre-populated the
import form with a Pet Store API defined using Swagger 2.0. To get started, close this
modal and select Import in the Create API form.

3. Once you click on the OK button, you will be redirected to a page where the
Example API is shown, from which you can get an idea of what an API response

looks like:

* Amazon AP| Gateway APIs > Create Show all hints 9

Create new API
In Amazon API Gateway, an API refers to a collection of resources and methods that can be invoked through HTTPS endpoints.

New API Import from Swagger @ Example API

Example API

Learn about the service by importing an example APl and turning on hints throughout the console.

1 {
2 "swagger": "2.0",
B "info": {
4 i : "Your first API with Amazon API Gateway. This is a sample API that integrates via HTTP with our demo Pet Store endpoints",
5 : "PetStore"
6
7 8 [C
8
g
10
1
12 'l
13 "tags": [
14 "pets"
15 1,
16 "description": "PetStore HTML web page containing API usage information",
17 "consumes": [
18 "application/json"
19 1.
Settings

Privacy Policy

@ Feedback (@ English (US)

[95]

Deploying Serverless APIs Chapter 4

The API we are building in this example is for a pet store and for maintaining the
pets inside the store. By going through the API, you will see what the bits and
pieces of an API looks like. The API looks like this:

.‘1: Amazon AP| Gateway APls > Create Show all hints 9

Example API

Learn about the service by importing an example API and turning on hints throughout the console.

1 {

2 "swagger": "2.0",

8 "info": {

4 "description": "Your first API with Amazon API Gateway. This is a sample API that integrates via HTTP with our demo Pet Store endpoints",
5 "title": "PetStore"

6 ,

7 "schemes": [

8 "https"

9 1,

10 "paths": {

11 /P8 &

12 "get": {

13 "tags": [

14 "pets"

15 s

16 "description": "PetStore HTML web page containing API usage information",
17 "consumes": [

18 "application/json"

19 1l

4. Once you click on the Import button at the end, you will be redirected to the
PetStore (b7exp0d681) API page that we have just created. The API page with all
the components looks like this:

:1§ Amazon AP| Gateway APIs > PetStore (b7exp0d681) > Resources > /(gg0zwv4jed) Show all hints 9
APIs Resources | Actions~ @/ Methods &
‘«
T = lecer |
I Resources GET
~ /pets Mock Endpoint
Stages GET
OPTIONS Authorization None
Authorizers APIKey Not required
~ /{petid
Gateway Responses {petid}
GET
OPTIONS

Models
Documentation
Binary Support
Usage Plans
API Keys
Custom Domain Names
Client Certificates
VPC Links

Settings

[96]

Deploying Serverless APIs Chapter 4

5. The resources in this API are the GET and POST resources, where you can add
pets and view the pets, which are available as a list. The list of resources from the
API we have created is as follows:

Resources Actions ~

v/
GET
v~ /pets
GET
OPTIONS

v /{petld}
GET
OPTIONS

6. By clicking on the first GET resource, we can see a detailed execution flow from
the client to the endpoint and back to the client. The execution flow of the
resource looks like this:

:1§ Amazon AP| Gateway APls > PetStore (b7exp0d681) > Resources > /(ggOzwvdjed) > GET Show all hints 9
APls . Resources | Actions~ | /_ GET - Method Execution Z
PetStore
v/
. i .
| Resources aET . E.s . Method Request Integration Request
v Jpets 5 Auth: NONE Type: MOCK
St: 3
ages GET ARN: arn:aws:execute-api:us-
OPTIONS
Authorizers east-
1:080983167913:b7exp0d681/*/G
~ /petld
Gateway Responses {RST }
Models OPTIONS og
Q
D " - =
ocumentation € m
Q0 3
&) Q
Binary Support 'g
Method Response L] Integration Response ® 5
Usage Plans -
HTTP Status: 200 HTTP status pattern: - 4
API Keys

Output passthrough: Yes
Custom Domain Names

Client Certificates
VPC Links

Settings

@ Feedback (@ English (US) © 2008 - 2017, Amazon Internet Services Private Ltd. or its affiliates. All rights reserved. Privacy Policy ~ Terms of Use

[971]

Deploying Serverless APIs Chapter 4

7. Now, if we click on the POST resource, we will find a similar model execution
flow for the POST resource. It looks very similar to that of the GET resource,
however, here the API endpoint is mentioned as a URL, as we are trying to
retrieve the result from it. The execution model looks as follows:

APIs > PetStore (b7exp0d681) > Resources > /pets(vd91bb) > POST Show all hints 9

Resources | Actions~ | /pets - POST - Method Execution -

Models: application/json => Output th h: N
NewPetResponse utput passthrough: No

v/

GET . Method Request o Integration Request o -
- TEST o
/pets 5 Auth: NONE Type: HTTP @

GET
i ARN: arn:aws:execute-api:us- Input passthrough: Yes =
OPTIONS east- .g
1:080983167913:b7exp0d681/*/P 3
v /{petid} @
121
GET =3
[}
OPTIONS cP
g

-

2 5
Method Response o Integration Response @ B
e
2
HTTP Status: 200 HTTP status pattern: - 4]
8
=
e
B
Q
I

© 2008 - 2017, Amazon Internet Services Private Ltd. or its affiliates. All rights reserved Privacy Policy Terms of Use

In the API Gateway, there is something called Stages, which can be used as
versioning models for an API. Some common names for Stages in practice
are test, development, and production. The Stages menu looks like this:

[98]

Deploying Serverless APIs Chapter 4

}1} Amazon AP| Gateway APIs > PetStore (b7exp0d681) > Stages Show all hints 9
APIs . Stages Select a stage
PetStore
Resources
I Stages
Authorizers

Gateway Responses
Models
Documentation
Binary Support
Usage Plans
API| Keys
Custom Domain Names
Client Certificates
VPC Links

Settings

, Amazon Internet Services Private Ltd. or its affil All rights reserved. Privacy Policy ~ Terms of Use

7. When you click on the Create option, it will open a creation wizard for the stage.
This looks as follows:

:1: Amazon APl Gateway ~ APls > PetStore (b7exp0d681) > Stages > Create Show all hints o

APIs Create Stage

PetStore Create a stage where your APIs will be deployed. For example, a test version of your API could be deployed to a stage named
beta.
Resources
Stages Stage name* pro

Authorizers Stage description

«

Gateway Responses Deployment*
Models P
Create

Documentation
Binary Support

Usage Plans

API| Keys

Custom Domain Names

Client Certificates

VPC Links

Settings

[99]

Deploying Serverless APIs Chapter 4

8. You can select any name for the Stage name value, and add the Stage
description value according to the name you have assigned and the purpose you
have in mind for this stage. Before that, you need to deploy the API that you have
created. This can be selected in the Actions drop-down menu as the Deploy API
button, as follows:

Resources Actions ~ / Methods

RESOURCE ACTIONS

v/
GET

> Jpets Create Resource

GET Enable CORS

OPTIONS Edit Resource Documentation "

Not required
v /petl¢ apiactions

GET ' Deploy API
OPTIC
Import API
Edit APl Documentation

Delete API

9. In the next menu, you can choose the Stage name and other details, before finally
clicking on the Deploy button, which will deploy your API with that particular
stage. This can be seen as follows:

Deploy API &

Choose a stage where your API will be deployed. For example, a test version of your
API could be deployed to a stage named beta.

Deployment stage [New Stage] 4
Stage name* Prod

Stage description

Deployment description

Cancel Deploy

[100]

Deploying Serverless APIs Chapter 4

The deployed stage would look as follows:

APls > PetStore (b7exp0d681) > Stages > Prod Showallhints @)
Stages m Prod Stage Editor Delete Stage
» & Prod

® Invoke URL: https://b7exp0d681.execute-api.us-east-1.amazonaws.com/Prod

Settings Logs Stage Variables SDK Generation Export Deployment History
Documentation History Canary
Configure the metering and caching settings for the Prod stage.
Cache Settings
Enable API cache

Default Method Throttling

Choose the default throttling level for the methods in this stage. Each method in this stage will respect these rate and
burst settings. Your account does not have permission to view the account level throttling settings. @

Enable throtting @ ©

Rate 1000 requests per second
Burst 2000 requests

Client Certificate

Setting up integration
As we now understand how the AWS API Gateway service works at a basic level, we will

move on to use that knowledge for building an end-to-end project which involves
deploying a completely serverless API.

[101]

Deploying Serverless APIs Chapter 4

In this section, we will be building and deploying a completely serverless API function from
scratch, along with learning the internals and other implementation details of the AWS
Lambda—AWS API Gateway integrations. We will be building the serverless API step-by-
step. So, follow along with the steps in this order. The procedure is as follows:

1. Firstly, we will start by creating a new API. This can be done via the Lambda
console which looks like this:

}1;‘ Amazon AP| Gateway APIs Show all hints 9
| APIs + Create API
4
PetStore

PetStore &

Usage Plans Created on 12/10/2017
Your first APl with Amazon API Gateway.

API Keys This is a sample API that integrates via

. HTTP with our demo Pet Store endpoints
Custom Domain Names

. " Endpoint Configuration
Client Certificates
Endpoint Type

VPC Links Regional

Settings

2. Once you have clicked on the +Create API button, you will be redirected to the
API creation wizard, where you will be asked to enter the name and description
of the API you are intending to build. For now, I have entered the name as
TestLambdaAPI. However, you are free to add whatever name and description
you would like to enter. The API creation console looks like this:

| APIs Create new API
‘
PetStore In Amazon API Gateway, an API refers to a collection of resources and methods that can be invoked through HTTPS endpoints.
Usage Plans © New API Clone from existing API Import from Swagger Example API
APl Keys Settings

Custom Domain Names Choose a friendly name and description for your API.

Client Certificates

VPC Links API name* TestLambdaAPI
Settings Description Building a serverless|API
Endpoint Type Edge optimized :
* Required Create APl

[102]

Deploying Serverless APIs Chapter 4

3. Once you click on the Create API button, you will be redirected to the page of the
API you have created. The API page would look similar to this:

42 AmazonAPIGateway APIs > TestLambdaAPi (9fkojispu) > Resources > /(qpnmaz78oe) Showallhints @)
APIs Resources Actions~ / Methods &
«
PetStore
/ ned t
TestLambdaAPI

Resources
Stages
Authorizers
Gateway Responses
Models
Documentation
Binary Support
Usage Plans
API Keys
Custom Domain Names
Client Certificates
VPC Links

Settings

4. Now that we have successfully created an API, we will now go ahead and create
resources in the APL You can do that by clicking on the Create Resource option
in the Actions drop-down menu:

APIs > TestLambdaAPI (9fkQjlspul) > Resources > /(gpnmaz78oe)

Resources Actions ~ / Methods

RESOURCE ACTIONS
/ Create Method \ 10ds defined
Create Resource
Enable CORS

Edit Resource Documentation

API ACTIONS
Deploy API
Import API
Edit APl Documentation
Delete API

[103]

Deploying Serverless APIs Chapter 4

5. This would open up a resource creation wizard where you can add the name and
resource path of the API resource which we are intending to build. After creating
the resource, click on the Create Resource button for your settings for the API
resource to be created accordingly. For the sake of this tutorial, I have named
it LambdaAPI. However, you can give it any name you want. The API creation
wizard looks like this:

Resources Actions~ | New Child Resource

/ Use this page to create a new child resource for your resource. ®
Configure as (Z'proxy resource o
Resource Name* LambdaAPI
Resource Path* / lambdaapi

You can add path parameters using brackets. For example, the resource path
{username} represents a path parameter called 'username'. Configuring /{proxy+}
as a proxy resource catches all requests to its sub-resources. For example, it
works for a GET request to /foo. To handle requests to /, add a new ANY method
on the / resource.

Enable APl Gateway CORS o

The resource that you have just created is now live in the API console; you can see
it under the Resources section:

Resources Actions ~

v/
/lambdaapi

6. You can create versions of a resource or even just a resource under a resource.
Let's go ahead and create one. For this, you need to click on the resource that you
have already created. Then, click on the Create Resource option in the drop-
down menu in the Actions menu:

[104]

Deploying Serverless APIs

Chapter 4

Resources Actions ~

RESOURCE ACTIONS
Create Method

v/

/lambda
Create Resource

Enable CORS
Edit Resource Documentation

Delete Resource

API ACTIONS
Deploy API
Import API
Edit APl Documentation
Delete API

/lambdaapi Methods

No methods defined for the resource.

7. This would open up a similar resource creation wizard under the resource which
we have already created. You can name that resource as versionl or just as v1
which is a regular software practice. I have named it v1. However, you can name

it whatever you want to:

Actions~ | New Child Resource

Resources
v/
/lambdaapi Configure as (Zproxy resource

Resource Name*

Resource Path*

Enable API Gateway CORS

* Required

Use this page to create a new child resource for your resource. (®

(i}

v1

/lambdaapi/ v1

You can add path parameters using brackets. For example, the resource path
{username} represents a path parameter called 'username'. Configuring
/lambdaapi/{proxy+} as a proxy resource catches all requests to its sub-resources.
For example, it works for a GET request to /lambdaapi/foo. To handle requests to
/lambdaapi, add a new ANY method on the /lambdaapi resource.

(i}

[105]

Deploying Serverless APIs Chapter 4

Now, we have a resource named v1 under the already existing resource,
/lambdaapi. We can see this under our Resources section. So, now the resources
hierarchy of our API looks like this:

Resources Actions~ | /lambdaapi/v1 Methods

v/ Nor

v /lambdaapi
N

8. We will be creating a serverless API for getting and querying the list of pets in a
pet store. So, the following steps will be aligned accordingly. The API should
return the name of the pets. So, we will have a new resource for pets for that
purpose. We will be creating a resource for this under the /v1 resource:

Resources Actions~ New Child Resource

v/ Use this page to create a new child resource for your resource. ®
v /lambdaapi Configure as (Z'proxy resource (i]
N
Resource Name* [Petsl
Resource Path* /lambdaapi/vl/ pets

You can add path parameters using brackets. For example, the resource path
{username} represents a path parameter called 'username'. Configuring
/lambdaapi/v1/{proxy+} as a proxy resource catches all requests to its sub-
resources. For example, it works for a GET request to /lambdaapi/v1/foo. To
handle requests to /lambdaapi/v1, add a new ANY method on the /lambdaapi/v1
resource.

Enable API Gateway CORS o

[106]

Deploying Serverless APIs Chapter 4

9. The resulting hierarchical structure for our API looks like this, after adding
the /pets resource under the /v1 resource:

Resources Actions- | /lambdaapi/v1/pets Methods

v/
v /lambdaapi
v N
/pets

10. Now, we will add a custom resource which enables us to query the APIL By
custom, we mean that any string can be added to the resource when sending a
request to this API, and the API would send back a request after checking and
querying for that string via a Lambda code. The custom resources can be
differentiated from the normal ones, as they can be created with curly braces. The
following screenshot will help you understand how to create them:

Resources Actions~ New Child Resource

v/ Use this page to create a new child resource for your resource. (®
~ /lambdaapi Configure as (Z'proxy resource [i]
v M
/pets Resource Name* pet type
Resource Path* /lambdaapi/vi/pets/ {type}

You can add path parameters using brackets. For example, the resource path
{username} represents a path parameter called 'username'. Configuring
/lambdaapi/v1/pets/{proxy+} as a proxy resource catches all requests to its sub-
resources. For example, it works for a GET request to /lambdaapi/v1/pets/foo. To
handle requests to /lambdaapi/v1/pets, add a new ANY method on the
/lambdaapi/v1/pets resource.

Enable APl Gateway CORS o

[107]

Deploying Serverless APIs Chapter 4

11. After clicking on the Create Resource button, the new custom child resource
for /pets will be created. The hierarchy of the resources is now as follows:

Resources Actions ~

v/
v /lambdaapi
v Nl
v /pets
/{type}

12. The overall structure of the API looks like this, as specified in the top-right part of
the following screenshot:

, Resources Actions~ | /lambdaapi/v1/pets/{type} Methods

v/
v /lambdaapi
v N
v /pets
Atype}

13. Now, we will add methods to this custom resource. As we will only be querying
the list of pets, we will only add the GET method. This can be done by clicking on
the {type} resource and clicking on Create Method in the drop-
down Actions menu in the top panel:

[108]

Deploying Serverless APIs Chapter 4

Resources | Actions- | /lambdaapi/v1/pets]

RESOURCE ACTIONS

v/
Create Method
v /lambdai
Create Resource
v /1
Enable CORS
v /pe

| Edit Resource Documentation

Delete Resource

API ACTIONS
Deploy API
Import API
Edit API Documentation
Delete API

14. This would create a small drop-down style menu under the {type} resource
where you can select a method from the available methods:

Resources Actions ~

v/
v /lambdaapi
v
v /pets
Ktype}

<>

[109]

Deploying Serverless APIs Chapter 4

15. We need to select the GET option from the available options. This would look as
follows:

Resources Actions ~

v/
v /lambdaapi
v N
v /pets
Htype}
v €

ANY
DELETE
| GET

HEAD
OPTIONS
PATCH

POST

PUT

16. After selecting the GET option and clicking on the small tick button beside it, we
will have created the GET method under our {type} resource. The hierarchy now
looks like this:

Resources Actions~

v/
v /lambdaapi
v M
v /pets

v /type}
GET

[110]

Deploying Serverless APIs Chapter 4

Deploying the Lambda function for API
execution

In this section, we will have a look at the steps to deploy the Lambda function:

1. The details of the GET method can also be seen on the right-hand side of the API
console, when you click on that method. The details look as follows:

Resources | Actions~ | /lambdaapi/v1/pets/{type} - GET - Setup

v/ Choose the integration point for your new method.
v /lambdaapi
v N
v /pets Integration type @ Lambda Function @
v /type} HTTP @
aEr Mock ©

AWS Service @
VPC Link &

Use Lambda Proxy integration (i}

<>

Lambda Region

Use Default Timeout @O

[111]

Deploying Serverless APIs Chapter 4

2. In the GET method console, click on the Lambda Function option. Select any one
region depending on your preference. I have chosen us-east-1 as the region as
shown in the following screenshot:

Resources Actions~ | /lambdaapi/v1/pets/{type} - GET - Setup

v/ Choose the integration point for your new method.
v /lambdaapi
v N
v /pets Integration type @ Lambda Function @
v /{type} HTTP ©
6T Mock @

AWS Service @
VPC Link @

Use Lambda Proxy integration (i]

Lambda Region ys-east-1 :

You do not have any Lambda Functions in us-east-1. Create a Lambda Function

Use Default Timeout @ ©

3. As expected, it says we do not have a Lambda function in that region. So, we
need to go ahead and create one. Click on the Create a Lambda Function link.
This will take you to the Lambda creation console which we are already
comfortable with:

[112]

Deploying Serverless APIs

Chapter 4

Lambda Functions Create function

Create function

Author from scratch

Start with a simple "hello world" example.

o Blueprints

Choose a preconfigured template as a starting point for your Lambda function.

7
=

Author from scratch info

Name*

Runtime*

Node.js 6.10

Role*

Defines the permissions of your function. Note that new roles may not be available for a few minutes after creation. Learn more about Lambda

execution roles.

Choose an existing role

v

4. From here, choose the keyword : hello-world-python blueprint from the list of

blueprints:

Lambda Functions Create function

Create function

Author from scratch

Start with a simple "hello world" example.

Blueprints o

Choose a preconfigured template as a starting point for your Lambda function.

=/
=

Blueprints info

I Q Add filter ®
1
| keyword : hello-world-python &® ‘
hello-world-python hello-world-python3
A starter AWS Lambda function. A starter AWS Lambda function.
python2.7 python3.6
Cancel

[113]

Deploying Serverless APIs

Chapter 4

5. In the next console, choose the basic information for the Lambda function as we

have done in the previous chapters:

Basic information info

Name*

Role*

about Lambda execution roles.

Choose an existing role

Existing role*

Logs permissions.

Defines the permissions of your function. Note that new roles may not be available for a few minutes after creation. Learn more

v

You may use an existing role with this function. Note that the role must be assumable by Lambda and must have Cloudwatch

6. After adding the relevant details, click on the orange Create function button.
That will take you to the page of the Lambda function you have just created. The

code can be edited from there onwards:

serverless-api [Quatifiers v | [Actions v

seetareston. v | e]

to input a test event when you are ready to test your function.

@ Congratulations! Your Lambda function "serverless-api" has been successfully created. You can now change its code and configuration. Click on the "Test" button

X

Configuration Monitoring

Add triggers ;
Click on a trigger from the list below "lB serverless-api

to add it to your function,

API Gateway
Add triggers from the list on the left
AWS loT
Alexa Skills Kit
Alexa Smart Home
CloudFront

CloudWatch Events

CloudWatch Logs

. Al

m AWS CloudFormation
. Amazon CloudWwatch Logs
>

Resources the function's role has access to will be
shown here

[114]

Deploying Serverless APIs Chapter 4

7. In the function's code, use this code instead of the one which is provided along
with the blueprint:

B8 lambda_function. x

1 def lambda_handler(event, context):

2 mobs = {

3 "Sea": ["GoldFish", "Turtle", "Tortoise", "Dolphin", "Seal"],
4 "Land": ["Labrador", "Cat", "Dalmatian", "German Shepherd",

5 "Beagle", "Golden Retriever"],

6 "Exotic": ["Iguana", "Rock Python"]

7 1

8

9

return {"type": mobs[event['type ']]}|

8. We are now done with tweaking the function code. Now, you can go ahead and
save the function:

Configuration Monitoring
Add triggers ‘p
Click on a trigger from the list below ||In serverless-api
to add it to your function. @ Saved
API Gateway

Add triggers from the list on the left . All
AWS loT
Alexa Skills Kit m AWS CloudFormation
Alexa Smart Home
CloudFront . Amazon CloudWatch Logs
CloudWatch Events

Resources the function's role has access to will be

CloudWatch Logs shown here

CadalCammit

[115]

Deploying Serverless APIs Chapter 4

9. Now, head back to the API Gateway console to the GET method page. Here,
under the Lambda functions in the us-east-1 region, I start getting the Lambda
function which I have just created (serverless-api) as an option:

/lambdaapi/v1/pets/{type} - GET - Setup

Choose the integration point for your new method.

Integration type @ Lambda Function @
HTTP @
Mock @
AWS Service @
VPC Link @

Use Lambda Proxy integration (1]

Lambda Region js-east-1 g

Lambda Function [s l (i}

Use Default Timeout _

10. On clicking Save, you will see a popup asking you to confirm that you are giving
API Gateway permission to invoke your Lambda function, you can acknowledge

it by clicking on OK:

Add Permission to Lambda Function

You are about to give APl Gateway permission to invoke your Lambda function:

arn:aws:lambda:us-east-1:080983167913:function:serverless-api

[116]

Deploying Serverless APIs Chapter 4

11. After clicking on OK, you will be redirected to the data flow page of the
GET method, that looks like this:

/lambdaapi/v1/pets/{type} - GET - Method Execution]
® Method Request ® Integration Request L
TEST
* Auth: NONE Type: LAMBDA
ARN: arn:aws:execute-api:us- Region: us-east-1
east-

1:080983167913:9fk9jlspul/*/GET.

-
Q

3

lon

o

[Y)

= /2]
s ®
2 S
o 2
Method Response ® Integration Response @ ﬁ

1

]

HTTP Status: 200 <.

HTTP status pattern: - %
Models: application/json =>

Output thi h: Ye
Empty utput passthrough: Yes

[117]

Deploying Serverless APIs Chapter 4

Handling authentication and user controls

After deploying, next we will discuss how to handle the authentication and user controls.
The steps are as follows:

1. Now that we have successfully created the skeleton of our serverless API, we will
now work on the nitty-gritty details which are needed to make it a fully
functional API. We will start with applying the mapping templates. This can be
done in the Integration Request menu. Clicking on the Integration Request link
will take you to a console which looks like this:

€ Method Execution /lambdaapi/v1/pets/{type} - GET - Integration Request

Provide information about the target backend that this method will call and whether the incoming request data should be modified.

Integration type © Lambda Function €
HTTP @
Mock @
AWS Service €
VPC Link @

Use Lambda Proxy integration (i]

Lambda Region us-east-1
Lambda Function serverless-api

Invoke with caller credentials @

Credentials cache Do not add caller credentials to cache key
Use Default Timeout @@

» URL Path Parameters

[118]

Deploying Serverless APIs Chapter 4

2. If you scroll down a bit in the same console, you will notice the Body Mapping
Templates section at the end:

Use Default Timeout @@

» URL Path Parameters

» URL Query String Parameters

» HTTP Headers

» Body Mapping Templates @

3. Clicking on the Body Mapping Templates will unfurl the options available in
that particular section:

v Body Mapping Templates @

Request body passthrough @ When no template matches the request Content-Type header @
When there are no templates defined (recommended) @

Never @

Content-Type
No mapping templates defined. The request

body will be passed through to the
integration endpoint

© Add mapping template

[119]

Deploying Serverless APIs Chapter 4

4. Select the second option which says When there are no templates defined
(recommended). And then, click on the Add mapping template option and
add application/json, and click on the small grey tick symbol beside it:

v Body Mapping Templates @

Request body passthrough When no template matches the request Content-Type header @
© When there are no templates defined (recommended) @

Never @

Content-Type

application/json|

© Add mapping template

5. After clicking the small grey tick symbol beside it, the Body Mapping Templates
section space will look like this:

v Body Mapping Templates &

Request body passthrough When no template matches the request Content-Type header @
© When there are no templates defined (recommended) @

Never @
Content-Type

application/json (-}

© Add mapping template

application/json

Generate template: v

1

[120]

Deploying Serverless APIs

Chapter 4

6. Now, in the template textbox, add the following code and click the Save button

underneath the text box:

application/json

Generate template:
1~}

B}

2 "type": "$input.params('type')"

Rl d

Cancel

Save

[121]

Deploying Serverless APIs Chapter 4

7. So, after all these steps, the resulting Body Mapping Templates section will look
like this:

v Body Mapping Templates @

Request body passthrough When no template matches the request Content-Type header @
© When there are no templates defined (recommended) @

Never @

Content-Type

application/json (-]

© Add mapping template

application/json

<

Generate template:

1-4
2 "type": "$input.params('type')"
ElY

[122]

Deploying Serverless APIs

Chapter 4

8. Now, going back to the Method Execution page, we can see the TEST option on

the left with a lightning bolt symbol beneath it:

/lambdaapi/v1/pets/{type} - GET - Method Execution]
Method Request Integration Request
TEST
5 Auth: NONE Type: LAMBDA
ARN: arn:aws:execute-api:us- Region: us-east-1
east-
1:080983167913:9fk9jlspul/*/GET,
-
[\
3
o
Q
Q0
S 3
Method Response Integration Response g
HTTP Status: 200 8.

Models: application/json =>
Empty

HTTP status pattern:

Output passthrough: Yes

[123]

Deploying Serverless APIs Chapter 4

9. Clicking on the TEST button on the left-side in the Client section and above the
thunderbolt option will take you to a page where you can test the API that you've
just created:

€ Method Execution /lambdaapi/v1/pets/{type} - GET - Method Test &

Make a test call to your method with the provided input
Path Request: /lambdaapi/vi/pets/
{type} Status: 200

Value Latency: 56 ms

Response Body
Query Strings {
"stackTrace": [

No query string parameters exist for this
method. You can add them via Method
Request.

[
"/var/task/lambda_function.py",
9,
"lambda_handler",
"return {\"type\": mobs[event['type']]}"
]
1,
"errorType": "KeyError",

Headers

No header parameters exist for this method.
You can add them via Method Request.

. "errorMessage": "u
Stage Variables }

No (Z'stage variables exist for this method.
Response Headers

Request Body

{"X-Amzn-Trace-Id":"sampled=0;root=1-5a39d711-b
Request Body is not supported for GET 4d8112d8b149¢35528c3b64" , "Content-Type" : "applic
methods.

ation/json"}

[124]

Deploying Serverless APIs Chapter 4

10. Now, let's type Exotic in the textbox below {type} and click on the Test button at
the bottom. If everything goes right, we should see the list of all the exotic pets
we have entered in the function code of our Lambda function:

€ Method Execution /lambdaapi/v1/pets/{type} - GET - Method Test

Make a test call to your method with the provided input

Path Request: /lambdaapi/v1/pets/Exotic
{type} Status: 200

) Latency: 134 ms

Exotic
Response Body
Query Strings {
) . . "type": [

No query string parameters exist for this "Iguana”,

method. You can add them via Method

"Rock Python"
Request. o

1
}
Headers

No header parameters exist for this method. ReSponse Headers

You can add them via Method Request.
{"X-Amzn-Trace-Id":"sampled=0;root=1-5a39d787-7
Stage Variables a48979b982f6£2240353cel", "Content-Type": "applic
ation/json"}
No ('stage variables exist for this method.
Logs
Request Body

Request Body is not supported for GET Execution log for request test-request
methods. Wed Dec 20 03:22:47 UTC 2017 : Starting executi

11. And rightly so, we did get the list of all of the exotic pets in the catalog. So, this
brings this chapter to an end, where you have learned how to build a fully
fledged serverless API from scratch, including how to deploy it.

[125]

Deploying Serverless APIs Chapter 4

12. In addition, if you want to add additional security settings, such as
Authorizations and API Key Required, you can do it in the Method Request
menu:

€ Method Execution /lambdaapi/v1/pets/{type} - GET - Method Request
Provide information about this method's authorization settings and the parameters it can receive.

Settings

Authorization NONE 2060
AWS_IAM
Request Validator NONE #' @

API Key Required fgjge 4

Summary

In this chapter, we have learned how to build a completely serverless API from scratch. We
have also learned how to add more resources and methods for the API, as well as how to
deploy it successfully to multiple stages of development and how to add additional security
settings such as authorization and API keys for authentication purposes.

We then learned how to associate a Lambda function with our API Gateway's API service
for handling the computational tasks of our APL

In the next chapter, we will be learning about logging and monitoring serverless
applications. In that chapter, we will learn about the logging and monitoring services of
AWS such as CloudWatch Metrics, CloudWatch Logs, and CloudWatch Dashboards in
detail, and try to set them up for our serverless applications. We will also learn how to
create a logging and monitoring pipeline from AWS Lambda to these monitoring tools
using some AWS services.

[126]

Logging and Monitoring

We have learned about the concepts of serverless architectures and understood the basics
and the internals of AWS's serverless service, AWS Lambda. We have also created some
example serverless projects to understand the concepts better. During the course of our
learning, we have also learned the basics of several other AWS services, such as alarms,
SNS, SQS, S3 buckets, and CloudWatch.

In this chapter, we will learn about how to do the logging and monitoring for the serverless
systems that we are building. Logging and monitoring software code and systems are very
important, as they helps us with the telemetry and disaster recovery. Logging is a process
where we store the logs emitted by our code or by our architecture as a whole. Monitoring
is a process where we closely monitor the activities, status, and health of the components
and processes in our code or architecture.

So, you will be learning how to set up and understand the monitoring suite of AWS
Lambda, which is closely integrated with the monitoring service of AWS, the CloudWatch
Dashboards. We will also learn about the logging service of AWS, the CloudWatch Logs
service. Finally, we will also learn about and understand the distributed tracing and
monitoring service of AWS, the CloudTrail service.

This chapter covers the following topics:

¢ Understanding CloudWatch
Understanding CloudTrail
Lambda's metrics in CloudWatch
Lambda's logs in CloudWatch

¢ Logging statements in Lambda

Logging and Monitoring Chapter 5

Understanding CloudWatch

As mentioned earlier, CloudWatch is the logging and monitoring service of AWS. We have
already looked at and learned about the CloudWatch Alarms, which are a sub-feature of
CloudWatch. We will now learn about the graphing suite of the service. Almost every
service in the AWS environment has a way to send it's logs and metrics to CloudWatch for
logging and monitoring purposes. Each service might have several metrics which can be
monitored, depending on the function.

Similarly, AWS Lambda also has some metrics, such as the invocation count, the
invocation's running time, and so on, which it sends to CloudWatch. It is also helpful to
note that the developers can also send custom metrics to CloudWatch. So in the following
steps, we shall be learning about the different parts and functions of AWS CloudWatch
corresponding to AWS Lambda:

1. Firstly, let us see what the CloudWatch console looks like and also get a feel for it
by navigating around the console. Browse to

console.aws.amazon.com/cloudwatch/:

| CloudWatch Metric Summary Additional Info
Dashboards

Alarms 4 Amazon CloudWatch monitors operational and performance metrics for your AWS cloud resources and applications. Getting Started Guide
You currently have 4 CloudWatch metrics available in the US East (N. Virginia) region. Monitoring Scripts Guide
N . . Overview and Features
Browse or search your metrics to get started graphing data and creating alarms.
Documentation

Q Search Metrics X Forums
Billing

Report an Issue

Events
Rules
Alarm Summary (&
Event Buses
Logs You do not have any alarms created in the US East (N. Virginia) region. Alarms allow you to send notifications or execute AutoScaling Create Alarm
Metrics actions in response to any CloudWatch metric.

You can now use Amazon CloudWatch alarms to monitor the estimated charges on your AWS bill and receive email alerts whenever
charges exceed a threshold you define.

You can set up billing alarms to receive e-mail alerts when your AWS charges exceed a threshold you choose. To get started, visit the
Account Billing console, click Preferences in the left navigation pane and check the Receive Billing Alerts box, then return here to the
CloudWatch console.

Service Health (&
Current Status Details
@ Amazon CloudWatch Service Service is operating normally

> View complete service health details

2. As we can see, there is a lot of information in the CloudWatch console. So, we
shall now try to understand each component one after the other. In the left side,
we can see a list of options, which includes Dashboards, Alarms, Billing, and so
on. We shall try to understand all of them and their functionality as part of
understanding the CloudWatch console.

[128]

https://signin.aws.amazon.com/signin?redirect_uri=https%3A%2F%2Fconsole.aws.amazon.com%2Fcloudwatch%2F%3Fstate%3DhashArgs%2523%26isauthcode%3Dtrue&client_id=arn%3Aaws%3Aiam%3A%3A015428540659%3Auser%2Fcloudwatch&forceMobileApp=0

Logging and Monitoring Chapter 5

3. A dashboard here is a panel of CloudWatch Metrics that the user can configure.
For example, a user might want to have a particular set of server (EC2) metrics at
a single place to be able to monitor them better. This is where AWS CloudWatch
Dashboards come into play. When you click on the Dashboards option on the
left, you can see the Dashboards console, which looks like this:

CloudWatch Dashboards Additional Information
| Dashboards
Alarms « Getting Started Guide
Documentation
Name Favorite Last updated (UTC) Forums
‘You have no CloudWatch dashboards. Please create a dashboard. Report an Issue
Billing
Events
Rules
Event Buses
Logs
Metrics
Favorites

4. Let us go ahead and create a new dashboard by clicking the blue Create

dashboard button on the top left-hand side of the console. The following box
appears:

Create new dashboard

Dashboard name:

Dashboard name

Cancel

[129]

Logging and Monitoring Chapter 5

5. This will take you to the next step, where you will be asked to select a widget
type for the dashboard. There are four types of widgets which are currently
available. The widget selection screen looks like this:

Add to this dashboard x

Select a widget type to configure and add to this dashboard.

|\/\/LA 11 Aa
O— O— @ ®

Line Stacked area Number Text
Compare metrics over Compare the total over Instantly see the latest Free text with
time time value for a metric markdown formatting
Cancel

6. For the sake of this tutorial, I am choosing the Line style widget. You can choose
whatever widget would fit your graphing style and the monitoring you need to
do. Once you select a widget style and click the blue Configure button, you will
be redirected to a wizard where you will be asked to add a metric as shown in the
following screenshot:

[130]

Logging and Monitoring

Chapter 5

Add metric graph

Untitled graph

1.00
08
06
0.4
0.2

0

08:00 08:15

All metrics Graphed metrics

Q se
4 Metrics

S3

4 Metrics

1h 3h 12h 1d 8d 1w custom -

08:30 08:45 09:00 09:15

09:30

09:45 10:00 10:15

Graph options

Line - 2 -
10:30 10:45
Cancel

7. Select one of the available metrics at the bottom and it will be added to the
widget. Once you are done with selecting the metrics, click on the blue Create
widget button in the lower-right part of the page as shown in the following

screenshot:

Add metric graph

Untitled graph

1.00

0
08:00

@ NumberOfObjects

08:15

All metrics

Al > S3 > Storage Metrics Q
BucketName (4)
v receiver-bucket

() receiver-bucket v

sender-bucket

08:30

Graphed metrics (1)

1h 3h 12h 1d 3d 1w custom ~
08:45 09:00 09:15 09:30 09:45 10:00 10:15 10:30
Graph options
StorageType Metric Name
AliStorageTypes NumberOfObjects
StandardStorage v BucketSizeBytes v
StandardStorage BucketSizeBytes

Q
4

Line h

10:45 11:00

Cancel Create widget

[131]

Logging and Monitoring Chapter 5

8. Now, you can see the dashboard that you have just created in
the Dashboards section:

Wat B "
CloudWatch Test-dashboard ~ | Addwidget | Actions Save dashboard th 3h 12h 1d 3d 1w custom~ & ¥
| Dashboards

- Test-dashboard P

NumberOfObjects
Alarms

1.00

Billing 05
Events No data available.

Rules

Event Buses

Logs °

08:00 11:03
Metrics @ NumberOfObjects

Favorites

© Add a dashboard

9. We have successfully learned and created an AWS CloudWatch Dashboard. We
will now move on to learning about CloudWatch Events. We have already
learned about CloudWatch Alarms in the previous chapters, looking at both their
functionality and how to create and work with them.

10. Click on the Events link in the CloudWatch menu on the left. You will be
redirected to the page of CloudWatch Events, as shown in the following

CloudWatch
Welcome to CloudWatch Events
Dashboards
. Test-dashboard CloudWatch Events helps you to respond to state changes in your AWS resources. When your resources change state they automatically send events into an event
est-dashboar < stream. You can create rules that match selected events in the stream and route them to targets to take action. You can also use rules to take action on a pre-
Alarms determined schedule. For example, you can configure rules to:
+ Automatically invoke an AWS Lambda function to update DNS entries when an event notifies you that Amazon EC2 instance enters the Running state
« Direct specific API records from CloudTrail to a Kinesis stream for detailed analysis of potential security or availability risks
« Take a snapshot of an Amazon EBS volume on a schedule
Biling

| vere

Event Buses

Logs Start Responding to CloudWatch Events

Metrics

Favorites
©Add a dashboard 1

|
]

——
I
Determine events of interest in Create rules to select events of Specify actions to take when a
the CloudWatch Events stream interest rule matches an event

[132]

Logging and Monitoring Chapter 5

11. Once you click on the blue Create rule button, you will be redirected to the
Events creation wizard, which looks like this:

Step 1: Create rule

4 Create rules to invoke Targets based on Events happening in your AWS environment.

Event Source Targets

Build or customize an Event Pattern or set a Schedule to invoke Targets. Select Target to invoke when an event matches your Event Pattern or when
schedule is triggered.

@® Event Pattern @ Schedule @
© Add target*
Build event pattern to match events by service %
Service Name -
Event Type -
~ Event Pattern Preview Copy to clipboard Edit
{

12. There can be two types of events, namely Event Pattern and Schedule, each of
which have different purposes. Here we will only learn about the Schedule type,
as it comes in handy for scheduling Lambda functions:

Step 1: Create rule

Create rules to invoke Targets based on Events happening in your AWS environment.

Event Source Targets

Build or customize an Event Pattern or set a Schedule to invoke Targets. Select Target to invoke when an event matches your Event Pattern or when
schedule is triggered.

Event Pattern @ @ Schedule @
© Add target*

@ Fixed rate of 5 Minutes v

Cron expression 0/5 * * * 7 *

Learn more about CloudWatch Events schedules.

» Show sample event(s)

* Required Cancel

[133]

Logging and Monitoring Chapter 5

13. The rate can be either set in terms of Minutes, Hours, or Days, or can be set as a
cron expression, whichever way you are comfortable with. Now, the target needs
to be selected. The target can be any valid Lambda function, as shown in the
following drop-down menu:

Targets

Select Target to invoke when an event matches your Event Pattern or when
schedule is triggered.

Lambda function - (%]

Function* v
» Configure v

» Configure input

O Add target*

14. Once you have selected the function, you can click on the blue Configure details
at the bottom. It will take you to the Configure rule details page as shown in the
following screenshot:

Step 2: Configure rule details
Rule definition

Name*

Description

State Enabled

CloudWatch Events will add necessary permissions for target(s) so they can be invoked when this rule is triggered.]

* Required Cancel Back

[134]

Logging and Monitoring Chapter 5

15. Once you enter the name and the description of the rule that you want to create,
you can click on the blue Create rule button at the bottom. This will successfully
create an event, and the same will be reflected in your CloudWatch console:

® Success x

Rule Test-Event was created.

Rules

Rules route events from your AWS resources for processing by selected targets. You can create, edit, and delete rules.

Status | All v | Name < Viewing 1 to 1 of 1 Rules >
Status Name Description
o Test-Event

We have successfully added a cron event for a Lambda function which means that
Lambda will be invoked at regular intervals, as specified by the user in the
settings of the event.

16. Now, we shall try to understand the Logs feature of AWS CloudWatch. This is
where the Lambda functions store their logs. You can click on the Logs link in the
menu on the left-hand side to access the console of CloudWatch Logs:

CloudWatch Log Groups

Actions v o & 0
Filter: Log Group Name Prefix X Log Groups 1-4
Log Groups Expire Events After Metric Filters Subscriptions
/aws/batch/job Never Expire 0 filters None
/aws/lambda/Test-Lambda Never Expire 0 filters None
/aws/lambda/serverless-api Never Expire 0 filters None
Packt-Test Never Expire 0 filters None

[135]

Logging and Monitoring Chapter 5

17. We can see the complete list of logs for all of the Lambda functions we have ever
created throughout the course of the book. When you click on a log group, you
can find more details about it, and also options for customization. Each log
stream is an invocation of the Lambda function that the log is associated with:

CloudWatch Log Groups Streams for /aws/lambda/serverless-api
Search Log Group Create Log Stream Delete Log Stream o & 0O
Filter: Log Stream Name Prefix X Log Streams 1-2
Log Streams ~ Last Event Time ~
2018/01/14/[$LATEST]b9e76905eaa04fe29ce5fdd79cd43cbe 2018-01-14 17:46 UTC+5:30
2017/12/20/[$LATEST]3de9755f0bd2400d94e79fa286a31c44 2017-12-20 08:52 UTC+5:30

18. You can also make use of the additional functionality provided by CloudWatch
for handling the logs data, which can be seen in the drop-down Actions menu
in Log Groups:

CloudWatch > Log Groups

o e 0

Create log group

Filter: Log Group Na| Log Groups 1-4

Delete log group

Log Groups Metric Filters Subscriptions
/aws/batch/job 0 filters None
/aws/lambda/Test- EFEC AR DA 0 filters None

© /aws/lambda/serve View all exports to Amazon S3 0 filters None
Packt-Test 0 filters None

Stream to AWS Lambda
Stream to Amazon Elasticsearch Service

19. Finally, we will wrap up by exploring and learning about the CloudWatch
Metrics. The metrics console can be accessed by clicking on the Metrics option on
the left-hand side of the CloudWatch console:

[136]

Logging and Monitoring Chapter 5

CloudWatch Untitled graph 1h 3h 12h 1d 3d 1w custom - Line v | Actons~ || 2 v @
Dashboards
Test-dashboard 4 1.00
Alarms
08
Your CloudWatch graph is empty.
06
Select some metrics to appear here.
Billing 04
Events 0.2
Rules
0
Event Buses 10:00 10:15 10:30 10:45 11:00 115 11:30 11:45 12:00 12:15 12:30 12:45
Logs
| Metrics —
Allmetrics ~ Graphed metrics Graph options
Favorit
© Add a dashboard Q Search for any metric, dimension or resource id
29 Metrics
Events Firehose Lambda
5 Metrics 2 Metrics 14 Metrics
Logs S3
4 Metrics 4 Metrics

20. You can select any option in the menu at the bottom for graphing the metrics. For
the purpose of this tutorial, I have added a Lambda metric, which is the number
of errors in the function, serverless-api:

Untitled graph 1h 3h 12h 1d 3d 1w custom ~ Line v Actions ¥ < - (]
‘ 200 7
1.00
[
10:00 10:15 10:30 10:45 11:00 11:15 11:30 11:45 12:00 12:15 12:30 12:45
@ Errors
All metrics Graphed metrics (1) Graph options
All > Lambda > By Function Name Q Search for any metric, dimension or resource id
FunctionName (4) N Metric Name v
(v) serverless-api Errors
serverless-api Duration
serverless-api Invocations
serverless-api Throttles

[137]

Logging and Monitoring Chapter 5

Understanding CloudTrail

CloudTrail is another monitoring service of AWS where you can look at all of the events
and trails that have happened in your AWS account. This service is a bit more detailed than
the CloudWatch service in how it records and stores the events and trails.

So, we shall explore and learn about this service in the following steps:

1. The AWS CloudTrail's dashboard can be accessed at

console.aws.amazon.com/cloudtrail/:

Welcome to CloudTrail What's new
| Dashboard P With CloudTrail, you can view events for your AWS account. Create a trail to retain a record of these events. With a trail, December 12, 2017
you can also create event metrics, trigger alerts, and create event workflows. Learn more AWS CloudTrail Enhances Event

Event history

Trails Create trail

Recent events

History View and Search

View all updates

These are the most recent events recorded by CloudTrail. To view all events for the last 90 days, go to Event history. Learn more
Pricing
Event time User name Event name Resc

Documentation

» 2018-01-15,10:05:58 PM root Runinstances gco: Forums
FAQs

14 2018-01-15, 09:33:39 PM root Runinstances IAM |

» 2018-01-15, 09:01:20 PM root Runlinstances IAM |

» 2018-01-15, 08:29:01 PM root Runlinstances IAM |

» 2018-01-15, 08:07:53 PM serverless-api CreateLogStream

View all events

2. The list of events in your AWS account can be seen on the left-hand side of the
CloudTrail menu when you click on the Event history button. The Event history
page looks like this:

[138]

https://signin.aws.amazon.com/signin?redirect_uri=https%3A%2F%2Fconsole.aws.amazon.com%2Fcloudtrail%2Fhome%3Fstate%3DhashArgs%2523%26isauthcode%3Dtrue&client_id=arn%3Aaws%3Aiam%3A%3A015428540659%3Auser%2Fcloudtrail&forceMobileApp=0

Logging and Monitoring

Chapter 5

CloudTrail

| Dashboard
Event history

Welcome to CloudTrail

With CloudTrail, you can view events for your AWS account. Create a trail to retain a record of these events. With a trail,
you can also create event metrics, trigger alerts, and create event workflows. Learn more

What's new

December 12, 2017
AWS CloudTrail Enhances Event
History View and Search

View all updates
Recent events
These are the most recent events recorded by CloudTrail. To view all events for the last 90 days, go to Event history. Learn more
" Pricing
Event time User name Event name Resc Documentation
» 2018-01-15,10:26:31 PM root ConsoleLogin Forums
FAQs
» 2018-01-15, 10:05:58 PM root Runinstances EC2:
> 2018-01-15, 09:33:39 PM root Runinstances IAM |
» 2018-01-15, 09:01:20 PM root Runlinstances IAM |
4 2018-01-15, 08:29:01 PM root Runinstances IAM |
View all events
3. The third functionality of CloudTrail is the trails. The user can set up trails for
their AWS services, such as Lambda. The trails that have been set up can be
found on the Trails dashboard. This can be accessed by going to the Trails
console by clicking on the Trails option in the menu on the left-hand side:
CloudTrail Trails Learn more
Dashboard Deliver logs to an Amazon S3 bucket. CloudTrail events can be processed by one trail for free. There is a charge for processing events Pricing
4 with additional trails. For more information, see AWS CloudTrail Pricing. Documentation
Event history Forums
| Trails FAQs

Name =« Region ¥ S3bucket -~ Log file prefix =«

No trails

CloudWatch Logs Log group

ded

-

Status «

[139]

Logging and Monitoring Chapter 5

4. Now, let us understand how to create a trail in the CloudTrail dashboard. You
can go to the main dashboard of CloudTrail and click on the blue Create trail
button. This will take you to the trail creation wizard:

Create Trail Learn more

Pricing
. " .
Trail name’ Documentation
Forums

Apply trail to all regions © Yes No (i) FAQs

Management events

Management events provide insights into the management operations that are performed on resources in your AWS account. Learn
more

Read/Write events © All Read-only Write-only None i)

Data events
Data events provide insights into the resource operations performed on or within a resource. Additional charges apply. Learn more

s3 Lambda

You can record S3 object-level API activity (for example, GetObject and PutObject) for individual buckets, or for all current and
future buckets in your AWS account. Additional charges apply. Learn more

Showing 0 of 0 resources

5. You can enter the details of your trail here. You can leave the default options as
they are for the Apply trail to all regions and the Management events options:

Create Trail Learn more

Pricing
Trail name* Test-trail Documentation
Forums

Apply trail to all regions © Yes No (i) FAQs

Management events

Management events provide insights into the management operations that are performed on resources in your AWS account. Learn

more

Read/Write events © All Read-only Write-only None i)

[140]

Logging and Monitoring Chapter 5

6. Now, moving on to the next setting, select the Lambda option and click on the
Log all current and future functions in the options list. This will ensure that all
of our Lambda functions are logged properly with CloudTrail:

Data events
Data events provide insights into the resource operations performed on or within a resource. Additional charges apply. Learn more

S3 Lambda

You can record Invoke API operations for individual functions, or for all current and future functions in your AWS account. Additional
charges apply for trails that include data events. Learn more

Viewing 1 - 1 of 1 functions

Function (1 selected) Region
Log all current and future functions €@ All regions
serverless-api US East (N. Virginia)

© Add function

7. Now, in the final Storage location option, select an S3 bucket for storing the
CloudTrail logs. This can be an already existing bucket or you can also ask
CloudTrail to create a new bucket for this purpose. I am using an existing bucket:

Storage location

Create a new S3 bucket Yes © No
S3 bucket* receiver-bucket (i}
» Advanced

Additional charges may apply @

* Required field

[141]

Logging and Monitoring Chapter 5

8. After all of the details and settings have been configured accordingly, you can
click on the blue Create trail button to create the trail. Now, you see the trail you
have just created in your CloudTrail dashboard as shown in the following

screenshot:
CloudTrail Trails Learn more
Dashboard Deliver logs to an Amazon S3 bucket. CloudTrail events can be processed by one trail for free. There is a charge for processing events Pricing
< with additional trails. For more information, see AWS CloudTrail Pricing. Documentation

Event histo
i Forums
| Trails Create trail FAQs
Name = Region ¥ S3 bucket - Log file prefix = CloudWatch Logs Log group - Status

Test-Trail All receiver-bucket o

9. Now, when you click on the trail that you have just created, you can see all of the
details with which it has been configured as shown in the following screenshot:

Trails > Configuration Logging m:] Learn more
Test-Tralil i Pricing
Documentation
Forums
v Trail settings 4 FAQs

When a trail applies to all regions, the trail exists in all regions and delivers log files for all regions to one Amazon S3 bucket and an
optional CloudWatch Logs log group. To see all of your trails, click Trails.

Apply trail to all regions Yes

~ Management events 4

Management events provide insights into the management operations that are performed on resources in your AWS account. Learn
more

Read/Write events All

v Data events v

Data events provide insights into the resource operations performed on or within a resource. Additional charges apply. Learn more

[142]

Logging and Monitoring Chapter 5

10. You can also notice a very interesting option that enables you to configure
CloudWatch Logs along with SNS to notify you of any specific activities, for
example when there is an error in a Lambda function:

Data events provide insights into the resource operations performed on or within a resource. Additional charges apply. Learn more
S3 Lambda

You can record S3 object-level API activity (for example, GetObject and PutObiject) for individual buckets, or for all current and
future buckets in your AWS account. Additional charges apply. Learn more

v Storage location 4
83 bucket receiver-bucket @Last log file delivered 2018-01-16, 7:51 am
Encrypt log files No
Enable log file validation Yes

Publish to SNS No

v CloudWatch Logs

Configuring delivery to CloudWatch Logs enables you to receive SNS notifications from CloudWatch when specific API activity
occurs. Standard CloudWatch and CloudWatch Logs charges will apply. Learn more.

11. And finally, you can also add tags to the trail, just like you can with the rest of
your AWS services:

v Tags Vd

Key Value

No tags added

[143]

Logging and Monitoring Chapter 5

12. Additionally, let us understand how to configure CloudWatch Logs for our trail.
So, for this you need to click on the blue Configure button in the CloudWatch
Logs section above the Tags section:

v CloudWatch Logs

Configuring delivery to CloudWatch Logs enables you to receive SNS notifications from CloudWatch when specific API activity
occurs. Standard CloudWatch and CloudWatch Logs charges will apply. Learn more.

New or existing log group* CloudTrail/DefaultLogGroup (i}

* Required field Cancel m

13. When you click Continue, it takes you to the creation wizard where you need to
configure the permissions accordingly with your IAM role settings. For the
purpose of this tutorial, I have selected the Create a new IAM Role option as
shown in the following screenshot:

AWS CloudTrail will deliver CloudTrail events associated with API activity in your account to your CloudWatch Logs log group

In order to successfully deliver CloudTrail events to your CloudWatch Logs log group, CloudTrail will assume the role you are creating or specifying. Assuming the role grants CloudTrail
permissions to two CloudWatch Logs API calls:

1. CreateLogStream: Create a CloudWatch Logs log stream in the CloudWatch Logs log group you specify
2. PutLogEvents: Deliver CloudTrail events to the CloudWatch Logs log stream

~ Hide Details
Role Summary (2]
Role Description ~ AWS CloudTrail will assume the role you create or specify to deliver CloudTrail
events to your CloudWatch Logs log group

IAM Role Create a new IAM Role v
Role Name CloudTrail_CloudWatchLogs_Role

¥ Hide Policy Document
Edit
{
“Version": "2012-10-17",
"Statement": [
{

"Sid": "AWSCloudTrailCreateLogStream20141101",
"Effect": "Allow",

Cancel m

[144]

Logging and Monitoring Chapter 5

14. After you have finished configuring the IAM role settings, you can click on the
blue Allow button at the bottom. After a couple of seconds of validation, the
CloudWatch Logs get configured, which you can see in the same CloudWatch
Logs section here:

v CloudWatch Logs &S o
Log group CloudTrail/DefaultLogGroup

IAM role CloudTrail_CloudWatchLogs_Rol
e

Create CloudWatch Alarms for Security and Network related API activity using CloudFormation template.

Lambda’s metrics in CloudWatch

As we have learned and understood how the CloudWatch and the CloudTrail services
work with respect to logging and monitoring, we shall move on to try and implement them
for our Lambda function(s). In this section, you will learn about the types of metrics that
Lambda possesses, which are monitored by CloudWatch, and how to create a dashboard
with all those metrics.

Similar to previous sections in this chapter and book, we shall try and understand the
concepts in the form of the following steps:

1. When you navigate over to your AWS Lambda console, you will see the Lambda
function which you have already created, in the list of available functions:

Lambda Functions
Functions (1) G | create function |
Q_ Filter by tags and attributes or search by keyword @ 1 {§}
Function name Description Runtime Code size Last Modified
serverless-api A starter AWS Lambda function. Python 2.7 350 bytes 29 days ago

[145]

Logging and Monitoring Chapter 5

2. When you click on the function, you will see two available options on the top:
Configuration and Monitoring. Navigate to the Monitoring section. You will see
a dashboard of metrics, which contains the following:
e Invocations

e Duration

e Errors
Throttles

¢ Iterator age
e DLQ errors

Configuration Monitoring

CloudWatch metrics at a glance (aggregated per hour)

Invocations Last 24 hours ¥ Duration Last 24 hours ¥
Jump to Metrics [4 Jump to Logs [4 Jump to Metrics [4 Jump to Logs [
150
30
100
20
50
10
0 0
12:00 18:00 17 Jan 06:00 12:00 18:00 17 Jan 06:00
Count Max Milliseconds

Avg Milliseconds

Min Milliseconds

Invocations and duration

[146]

Logging and Monitoring

Chapter 5

/A Errors

Jump to Metrics [4

Last 24 hours ¥ © Throttles

Jump to Logs [4

Jump to Metrics [4

Last 24 hours ¥

Jump to Logs [4

7
30 0.8
20 0.6
0.4
10
0.2
0 0
12:00 18:00 17 Jan 06:00 12:00 18:00 17 Jan 06:00
Count Count
Errors and Throttles
Iterator age Last 24 hours ¥ DLQ errors Last 24 hours ¥
Jump to Metrics [4 Jump to Logs [4 Jump to Metrics [Jump to Logs [4
'
'
1 0 1
'
'
0.8 ' 0.8
'
'
0.6 : 0.6
'
'
0.4 ' 0.4
:
02 : 02
'
---0 ' 0
12:00 18:00 17 Jan + 06:00 12:00 18:00 17 Jan 06:00
2018/01/17 03:30:
Max Milliseconds: 0 Count

Iterator age and DLQ errors

[147]

Logging and Monitoring Chapter 5

3. Let us understand each of them in detail. The first metric is the Invocations
metric, which has the time on the x axis and the number of invocations of the
Lambda function on the y axis. This metric helps us understand when and how
many times our Lambda function has been invocated:

Invocations Last 24 hours ¥
Jump to Metrics [4 Jump to Logs [8
~— ~—

30

20

10

0
12:00 18:00 17 Jan 06:00

Count

When you click Jump to Logs, it takes you to the CloudWatch Logs console of the
Lambda invocations, which looks like this:

[148]

Logging and Monitoring

Chapter 5

Filter events

Time (UTC +00:00)
2018-01-16

03:14:23
03:14:23
03:14:23
03:14:23
03:16:38
03:16:38
03:16:38
03:16:38
03:17:44
03:17:44
03:17:44
03:17:44
03:19:40
03:19:40
03:19:40
03:19:40
03:21:39
03:21:39
03:21:39
03:21:39
03:22:33

vvVvYTvYTYTYTYTYTIYTIYTIYTYTYTYTYTYTYTYTVYTVYSY

CloudWatch > Log Groups > /aws/lambda/serverless-api

> All streams

Expandall @

Row Text < &

(]

all 2018-01-16 (03:00:00) - 2018-01-17 (03:00:00) ~

No older events found for the selected date range. Adjust the date range.

START Requestld: f7ae6bfe-faba-11e7-a72b-df03dec5c65¢ Version: SLATEST

‘type': KeyError Traceback (most recent call last): File "/var/task/lambda_function.py", line 9
END Requestld: f7ae6bfe-faba-11e7-a72b-df03dec5c65c

REPORT Requestld: f7ae6bfe-faba-11e7-a72b-df03dec5c65¢ Duration: 0.43 ms Billed Dura
START Requestld: aa8aff17-fabb-11e7-95c4-e53c3d61044a Version: $LATEST

'type': KeyError Traceback (most recent call last): File "/var/task/lambda_function.py", line 9
END Requestld: aa8aff17-fabb-11e7-95c4-e53c3d61044a

REPORT Requestld: aa8aff17-fa6b-11e7-95c4-e53c3d61044a Duration: 0.43 ms Billed Dure
START Requestld: aa8aff17-fabb-11e7-95c4-e53c3d61044a Version: $LATEST

'type': KeyError Traceback (most recent call last): File "/var/task/lambda_function.py", line 9
END Requestld: aa8aff17-fabb-11e7-95c4-e53c3d61044a

REPORT Requestld: aa8aff17-faéb-11e7-95c4-e53c3d61044a Duration: 0.55 ms Billed Dure
START Requestld: aa8aff17-fabb-11e7-95c4-e53c3d61044a Version: $LATEST

‘type': KeyError Traceback (most recent call last): File "/var/task/lambda_function.py", line 9
END Requestld: aa8aff17-fabb-11e7-95c4-e53c3d61044a

REPORT Requestld: aa8aff17-fa6b-11e7-95c4-e53c3d61044a Duration: 0.43 ms Billed Dure
START Requestld: 5d7685f0-fabc-11e7-91e9-7352335265f1 Version: $LATEST

'type': KeyError Traceback (most recent call last): File "/var/task/lambda_function.py", line 9
END Requestld: 5d7685f0-faéc-11e7-91e9-7352335265f1

REPORT Requestld: 5d7685f0-fa6c-11e7-91e9-7352335265f1 Duration: 15.43 ms Billed Du
START Requestld: 5d7685f0-fa6c-11e7-91e9-7352335265f1 Version: $LATEST

Show in stream

(Z'2018/01/15/[$LATEST]9c6446e. ..
(Z'2018/01/15/[$LATEST|9c6446e...
(Z'2018/01/15/[$LATEST|9c6446e...
(Z'2018/01/15/[$LATEST|9c6446e...
(Z'2018/01/15/[$LATEST|9c6446e. ..
(Z'2018/01/15/[$LATEST|9c6446€...
(£'2018/01/15/[$LATEST|9c6446e...
(Z'2018/01/15/[$LATEST|9c6446€...
(Z'2018/01/15/[$LATEST|9c6446€...
(Z'2018/01/15/[$LATEST|9c6446e...
(Z'2018/01/15/[$LATEST|9c6446e...
(Z'2018/01/15/[$LATEST|9c6446€...
(Z'2018/01/15/[$LATEST|9c6446e...
(Z'2018/01/15/[$LATEST|9c6446e...
(Z'2018/01/15/[$LATEST|9c6446e...
(Z2018/01/15/[$LATEST|9c6446e...
(2'2018/01/15/[$LATEST|9c6446€...
(Z'2018/01/15/[$LATEST|9c6446e. ..
(Z2018/01/15/[$LATEST|9c6446€. ..
(2'2018/01/15/[$LATEST|9c6446€...
(Z'2018/01/15/[$LATEST|9c6446e. ..

And when you click on the Jump to Metrics option, it will take you to the

CloudWatch Metrics dashboard of that particular metric, which gives you a much

more customized and granular graph of the same metric, which looks like this:

Untitled graph

4.00 Count

2018-01-16 (08:30:00) - 2018-01-17 (08:30:00) ~ = Line v

Actions ¥

2.96

2.00

@ Invocations

All metrics
Label
[] Invocations

Graphed metrics (1)

1. @ Invocations 3.00

Graph options

Details Statistic®@

Lambda * Invocations * FunctionName: serverless... Sum

Period®

5 Minutes

D1-16>08:50
03:30 04:30 05:30 06:30 N7:30 tcaw w1030 11:30 12:30 13:30 14:30 15:30 16:30 17:30 18:30 19:30 20:30 21:30 22:30 23:30 00:30 01:30 02:30
2018-01-16 08:50 UTC

Y Axis

K

Actions®@

LB&eo

c - e

[149]

Logging and Monitoring Chapter 5

4. The second metric in the Lambda's monitoring dashboard is the Duration metric,
which tells you the duration of each invocation of our Lambda function. It also
has time as the X axis, and the duration time in the Y axis in the unit of
milliseconds. It also tells you the maximum, average, and the minimum duration
of your Lambda function over a period of time:

Duration Last 24 hours ¥
Jump to Metrics [4 Jump to Logs [4
150
100
50
0
12:00 18:00 17 Jan 06:00
Max Milliseconds
Avg Milliseconds

5. Again, clicking on the Jump to Logs button will take you to the same page as that
of the previous metric. Clicking on the Jump to Metrics button will take you to
the CloudWatch metric page of the Duration metric, which looks like this:

[150]

Logging and Monitoring Chapter 5

Untitled graph 2018-01-16 (08:30:00) - 2018-01-17 (08:30:00) ~ = Line v Actions v =IO [>)

494 Milliseconds

249

0.44
03:30 04:30 05:30 06:30 07:30 08:30 09:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30 17:30 18:30 19:30 20:30 21:30 22:30 23:30 00:30 01:30 02:30

@ Duration

All metrics Graphed metrics (1) Graph options

Label Details Statistic®@ Period @ Y Axis Actions@
[] Duration Lambda * Duration * FunctionName: serverless-ap... Average 5 Minutes > ll @ [x)

6. The third metric is the Errors metric, which helps us keep a look out for errors in
our invocations of the Lambda function. The Y axis is the number of errors while
the X axis is the timeline:

A Errors Last 24 hours ¥
Jump to Metrics [Jump to Logs [4
i

30

20

10

0
12:00 18:00 18 Jan 06:00

Count

[151]

Logging and Monitoring Chapter 5

7. The CloudWatch Dashboard of the same metric can be seen by clicking on the
Jump to Metrics link:

Untitled graph 2018-01-17 (08:30:00) - 2018-01-18 (08:30:00) ~ = Line v Actions ¥ o |- [2)

300 £

2.00
03:30 04:30 05:30 06:30 07:30 08:30 09:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30 17:30 18:30 19:30 20:30 21:30 22:30 23:30 00:30 01:30 02:30
@ Errors

All metrics Graphed metrics (1) Graph options

Label Details Statistic® Period® Y Axis Actions®@
[] Errors Lambda * Errors * FunctionName: serverless-api *... Sum 5 Minutes > JANN I %)

8. The fourth metric is Throttles. This metric counts the number of times your
Lambda functions have been throttled, which means the number of times the
concurrent executions of the functions have breached the set limit of 1,000 per
region. We won't encounter this metric very frequently as the Lambda functions
which we build as examples in this book stay well within the concurrency limits:

© Throttles Last 24 hours ¥

Jump to Metrics [4 Jump to Logs [4

0.8
0.6
0.4

0.2

12:00 18:00 18 Jan 06:00

Count

[152]

Logging and Monitoring Chapter 5

9. By clicking on the Jump to Metrics link, we can also see this metric in our
CloudWatch Metrics dashboard:

Untitled graph 2018-01-17 (08:30:00) - 2018-01-18 (08:30:00) ~ | Line v Actions ¥ S (%)

1.00 Co

0.5

0

03:30 04:30 05:30 06:30 07:30 08:30 09:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30 17:30 18:30 19:30 20:30 21:30 22:30 23:30 00:30 01:30 02:30
@ Throttles

All metrics Graphed metrics (1) Graph options
Label Details Statistic® Period® Y Axis Actions@
. Throttles Lambda * Throttles * FunctionName: serverless-a... Sum 5 Minutes > Q fa (x]

10. The fifth metric is the iterator age. This is only valid for functions which are

triggered by the DynamoDB stream or the Kinesis stream. It gives the age of the
last record which is processed by the function:

Iterator age Last 24 hours ¥

Jump to Metrics [4 Jump to Logs [4

0.8
0.6
0.4

0.2

12:00 18:00 18 Jan 06:00

Max Milliseconds

[153]

Logging and Monitoring Chapter 5

The Jump to Metrics link takes you to the CloudWatch Metrics dashboard of this

metric:
Untitled graph 2018-01-17 (08:30:00) - 2018-01-18 (08:30:00) = | Line v | | Actions ~ 2+ e
1.00
0.5

0
03:30 04:30 05:30 06:30 07:30 08:30 09:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30 17:30 18:30 19:30 20:30 21:30 22:30 23:30 00:30 01:30 02:30
@ lteratorAge

All metrics Graphed metrics (1) Graph options
Label Details Statistic®@ Period® Y Axis Actions®@
[] IteratorAge Lambda * IteratorAge * FunctionName: serverless... Maximum 5 Minutes > JANN N <}

11. The sixth and the last metric is the DLQ errors metric. This gives the number of
errors that occurred while sending messages (failed event payloads) to a dead
letter queue. Most often the errors would be caused due to faulty permission
configurations and timeouts:

DLQ errors Last 24 hours ¥

Jump to Metrics [4 Jump to Logs [4

0.8
0.6
0.4

0.2

12:00 18:00 18 Jan 06:00

Count

[154]

Logging and Monitoring Chapter 5

The Jump to Metrics link will take you to the CloudWatch Metrics dashboard of

the same metric:

2018-01-17 (08:30:00) - 2018-01-18 (08:30:00) ~ ' Line - Actions ~ =0 (2]

Untitled graph

1.00
0.5

0
03:30 04:30 05:30 06:30 07:30 08:30 09:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30 17:30 18:30 19:30 20:30 21:30 22:30 23:30 00:30 01:30 02:30

@ DeadLetterErrors

All metrics Graphed metrics (1) Graph options

Statistic® Period® Y Axis Actions®@

5 Minutes > JANN I x]

Label Details

[] DeadLetterErrors Lambda * DeadLetterErrors * FunctionName: serv... Sum

' Ll
Lambda's logs in CloudWatch
So far, we have learned about and understood the metrics of AWS Lambda in great detail.
Now, we will move on to understanding the logs of the Lambda functions. As always, we
will try to understand them via the following steps:
1. Logs for AWS Lambda functions are stored in CloudWatch's Logs service. You

can access the CloudWatch Logs service by going to the Logs dashboard by
clicking on the main CloudWatch dashboard.

[155]

Logging and Monitoring

Chapter 5

2. When you click on the logs of the serverless-api, /aws/lambda/serverless-api, in

the list, we go to the log stream of the serverless API, which looks like this:

CloudWatch > Log Groups > Streams for /aws/lambda/serverless-api

Search Log Group Create Log Stream Delete Log Stream

Filter: Log Stream Name Prefix X

Log Streams
2018/01/21/[$LATEST]9d5e23b7{6a347e683f75b77ce34e08c
2018/01/21/[$LATEST]4a04a6e78e834caea812a8b2dbcf22ff
2018/01/21/[$LATEST]fb05e685dc6b4b2f82863098ed22236f
2018/01/20/[$LATEST]5¢1e67dd6fb849d3910115dcbf7809eb
2018/01/20/[$LATEST]e774acd73a484686b18bf400bad1c863
2018/01/20/[$LATEST]94cfc6283ed447afadf563abb0c67618
2018/01/19/[$LATEST]0fd88f1694aa44b48716f62effbcafd3
2018/01/19/[$LATEST]5af5bbec461347a4bcad21d502a84ba0
2018/01/19/[$LATEST]a046fbb4b5874ab7a1db9671648f93e4
2018/01/19/[$LATEST]dbe9115136c54aafbe76c8245879dc0a
2018/01/18/[$LATEST]b84dd6e6b09048e6b8e2ca26d6a5b3cO
2018/01/18/[$LATEST]0710fd96881a480cbal1e642e45b76f7
2018/01/18/[$LATEST]afca54726a7a4dea9cc361eb8034cfbe
2018/01/17/[$LATEST]a3fcbaf23038403aac8a4a9efe57e8ea
2018/01/17/[$LATEST]57e2e7b470214695afaf5d4e7fdb5056
2018/01/17/[$LATEST]3aeb54346fff4913bbd3dd28d3bc59e3
2018/01/17/[$LATEST]bcc1e1b5dc024cce9c3e3e8d4d0a6194
2018/01/16/[$LATEST]06efd549538d4f38b73be1756cf3de5d

[156]

Last Event Time

2018-01-21 23:09 UTC+5:30
2018-01-21 22:12 UTC+5:30
2018-01-21 15:02 UTC+5:30
2018-01-21 07:47 UTC+5:30
2018-01-20 23:56 UTC+5:30
2018-01-20 16:09 UTC+5:30
2018-01-20 08:49 UTC+5:30
2018-01-20 02:19 UTC+5:30
2018-01-19 19:47 UTC+5:30
2018-01-19 12:59 UTC+5:30
2018-01-19 06:49 UTC+5:30
2018-01-18 22:56 UTC+5:30
2018-01-18 16:09 UTC+5:30
2018-01-18 09:09 UTC+5:30
2018-01-18 02:51 UTC+5:30
2018-01-17 20:47 UTC+5:30
2018-01-17 14:39 UTC+5:30
2018-01-17 06:57 UTC+5:30

£

£

S »

Log Streams 1-27

>

Logging and Monitoring Chapter 5

3. Each log stream here is a Lambda invocation. So, whenever your Lambda
function is invoked, it creates a new log stream here. If the invocation is a part of
Lambda's retry process, then the logs for that particular invocation will be written
under the most recent log stream. A single log stream can contain several details.
But firstly, let us look at what a particular log stream looks like:

CloudWatch > Log Groups > /aws/lambda/serverless-api > 2018/01/21/[$LATEST]9d5e23b7f6a347e683f75b77ce34e08c

Filter events

Time (UTC +00:00)

2018-01-21
17:36:38
17:36:38
17:37:41
17:37:41
17:37:41
17:37:41
17:39:28
17:39:28
17:39:28
17:39:28
17:41:38
17:41:38
17:41:38
17:41:38
17:42:34
17:42:34
17:42:34
17:42:34
17:44:22
17:44:22
17:44:22
17:44:22

Y Y VY Y YYVYVVYVVYVYTVYVVYYIYTVYIVYYTYTYTYYTTY

Expandall @ Row Text [+ & (2]

all 30s 5m 1h 6h 1d 1w custom ~

END Requestld: a271db0a-fed1-11e7-9937-6bdcf38ac0c1

REPORT Requestld: a271db0a-fed1-11e7-9937-6bdcf38ac0c1 Duration: 2.28 ms Billed Duration: 100 ms Memory Size: 128 MB Max
START Requestld: a271db0a-fed1-11e7-9937-6bdcf38acOc1 Version: $LATEST

'type': KeyError Traceback (most recent call last): File "/var/task/lambda_function.py", line 9, in lambda_handler return {"type": mobs][i
END Requestld: a271db0a-fed1-11e7-9937-6bdcf38ac0c1

REPORT Requestld: a271db0a-fed1-11e7-9937-6bdcf38acOc1 Duration: 9.11 ms Billed Duration: 100 ms Memory Size: 128 MB Max
START Requestld: a271db0a-fed1-11e7-9937-6bdcf38ac0c1 Version: $LATEST

'type': KeyError Traceback (most recent call last): File "/var/task/lambda_function.py", line 9, in lambda_handler return {"type": mobs|i
END Requestld: a271db0a-fed1-11e7-9937-6bdcf38ac0c1

REPORT Requestld: a271db0a-fed1-11e7-9937-6bdcf38ac0c1 Duration: 0.70 ms Billed Duration: 100 ms Memory Size: 128 MB Max
START Requestld: 55641971-fed2-11e7-8d21-f3a179883953 Version: $LATEST

'type': KeyError Traceback (most recent call last): File "/var/task/lambda_function.py", line 9, in lambda_handler return {"type": mobs][i
END Requestld: 5564197 1-fed2-11e7-8d21-f3a179883953

REPORT Requestld: 55641971-fed2-11e7-8d21-f3a179883953 Duration: 12.96 ms Billed Duration: 100 ms Memory Size: 128 MB Mz
START Requestld: 55641971-fed2-11e7-8d21-f3a179883953 Version: $LATEST

'type': KeyError Traceback (most recent call last): File "/var/task/lambda_function.py", line 9, in lambda_handler return {"type": mobs][i
END Requestld: 5564197 1-fed2-11e7-8d21-f3a179883953

REPORT Requestld: 55641971-fed2-11e7-8d21-f3a179883953 Duration: 13.31 ms Billed Duration: 100 ms Memory Size: 128 MB Mz
START Requestld: 55641971-fed2-11e7-8d21-f3a179883953 Version: $LATEST

'type': KeyError Traceback (most recent call last): File "/var/task/lambda_function.py”, line 9, in lambda_handler return {"type": mobs][i
END Requestld: 5564197 1-fed2-11e7-8d21-f3a179883953

REPORT Requestld: 55641971-fed2-11e7-8d21-f3a179883953 Duration: 16.19 ms Billed Duration: 100 ms Memory Size: 128 MB Mz

[157]

Logging and Monitoring Chapter 5

4. Also, if you look closely, you can observe that Lambda's logs also give out
information about the duration of the Lambda function's invocation, the duration
for which it is billed for, and also the memory used by the function. These metrics
help in understanding our functions' performance better and for further
optimization and fine tuning;:

Filter events all 30s 5m 1h 6h 1d 1w custom ~

Time (UTC +00:00) Message
AT

e e e e e =

REPORT RequestlId: 718212e7-fecd-11e7-a74a-933c4948e6b@ Duration: 3.09 ms Billed Duration: 100 ms Memory Size: 128 MB Max Memory Used: 20 MB

4 17:09:22 START Requestld: 718212e7-fecd-11e7-a74a-933c4948e6b0 Version: $LATEST

» 17:09:22 'type': KeyError Traceback (most recent call last): File "/var/task/lambda_function.py", line 9, in lambda_handler return {"type": mobs][i
4 17:09:22 END Requestld: 718212e7-fecd-11e7-a74a-933c4948e6b0

v 17:09:22 REPORT Requestld: 718212e7-fecd-11e7-a74a-933c4948e6b0 Duration: 0.79 ms Billed Duration: 100 ms Memory Size: 128 MB Ma)

REPORT RequestId: 718212e7-fecd-1le7-a74a-933c4948e6b@ Duration: ©.79 ms Billed Duration: 100 ms Memory Size: 128 MB Max Memory Used: 20 MB

» 17:11:38 START Requestld: 245110b6-fece-11e7-9d04-a31c7282a49f Version: $LATEST

3 17:11:38 ‘type': KeyError Traceback (most recent call last): File "/var/task/lambda_function.py”, line 9, in lambda_handler return {"type": mobs]i
» 17:11:38 END Requestld: 245110b6-fece-11e7-9d04-a31c7282a49f

v 17:11:38 REPORT Requestld: 245110b6-fece-11e7-9d04-a31c7282a49f Duration: 5.70 ms Billed Duration: 100 ms Memory Size: 128 MB Max

REPORT RequestId: 245110b6-fece-11e7-9d04-a31c7282a49f Duration: 5.70 ms Billed Duration: 100 ms Memory Size: 128 MB Max Memory Used: 20 MB

» 17:12:44 START Requestld: 245110b6-fece-11e7-9d04-a31c7282a49f Version: SLATEST

4 17:12:44 'type': KeyError Traceback (most recent call last): File "/var/task/lambda_function.py", line 9, in lambda_handler return {"type": mobs[i
3 17:12:44 END Requestld: 245110b6-fece-11e7-9d04-a31c7282a49f

v 17:112:44 REPORT Requestld: 245110b6-fece-11e7-9d04-a31c7282a49f Duration: 8.73 ms Billed Duration: 100 ms Memory Size: 128 MB Max

REPORT RequestId: 245110b6-fece-11e7-9d0@4-a31c7282a49f Duration: 8.73 ms Billed Duration: 100 ms Memory Size: 128 MB Max Memory Used: 20 MB

4 17:14:53 START Requestld: 245110b6-fece-11e7-9d04-a31c7282a49f Version: $LATEST

[158]

Logging and Monitoring

Chapter 5

5. There are several columns in CloudWatch Logs for you to select from, which are
not shown in the preceding screenshots. These are the available options:

Search Log Group Create Log Stream Delete Log Stream

Filter: Log Stream Name Prefix

Log Streams
2018/01/21/[$LATEST]9d5e23b7f6a3|
2018/01/21/[$LATEST]4a04a6e78e8
2018/01/21/[$LATEST]fb05e685dc6h|
2018/01/20/[$LATEST]5¢1e67dd6fb8|
2018/01/20/[$LATEST]e774acd73a4
2018/01/20/[$LATEST]94cfc6283ed4
2018/01/19/[$LATEST]0fd88f1694aa4
2018/01/19/[$LATEST]5af5bbec4613]

2018/01/19/[$LA Ma046

2018/01/19/[$LATEST]dbe9115136¢4
2018/01/18/[$LATEST]b84dd6e6b09(

X

2018/01/18/[$LATEST]0710fd96881a

Show/Hide Columns X

Log Streams

Last Event Time
Last Ingestion Time
First Event Time
Stored Bytes
ARN
Upload Sequence Token
Creation Time

Close

2018/01/18/[$LATEST]afca54726a7a4dea9cc361eb8034cf6e
2018/01/17/[$LATEST]a3fcbaf23038403aac8a4adefe57e8ea
2018/01/17/[$LATEST]57e2e7b470214695afaf5d4e7fdb5056
2018/01/17/[$LATEST]3aeb54346fff4913bbd3dd28d3bc59e3
2018/01/17/[$LATEST]bcc1e1b5dc024cce9c3e3e8d4d0a6194

2018/01/16/[$LATEST]06efd549538d4{38b73be1756cf3de5d
I —S—M—MmMB—BMaBa—

Last Event Time

2018-01-21 23:39 UTC+5:30
2018-01-21 22:12 UTC+5:30
2018-01-21 15:02 UTC+5:30
2018-01-21 07:47 UTC+5:30
2018-01-20 23:56 UTC+5:30
2018-01-20 16:09 UTC+5:30
2018-01-20 08:49 UTC+5:30
2018-01-20 02:19 UTC+5:30
2018-01-19 19:47 UTC+5:30
2018-01-19 12:59 UTC+5:30
2018-01-19 06:49 UTC+5:30
2018-01-18 22:56 UTC+5:30
2018-01-18 16:09 UTC+5:30
2018-01-18 09:09 UTC+5:30
2018-01-18 02:51 UTC+5:30
2018-01-17 20:47 UTC+5:30
2018-01-17 14:39 UTC+5:30
2018-01-17 06:57 UTC+5:30

G#Ol

Log Streams 1-27

[159]

Logging and Monitoring

Chapter 5

So, when you select more of those, you will see them in your dashboard as
columns. These come in handy when you're doing a much more fine-grained
debugging of our Lambda functions:

CloudWatch Log Groups Streams for /aws/lambda/serverless-api
Create Log Stream Delete Log Stream o> & 0
Filter: Log Stream Name Prefix x Log Streams 1-27

Log Streams ~ Last Event Time v Last Ingestion Time Stored Bytes Creation Time
2018/01/21/[$LATEST]9d5e23b7{6a347e683f75b77ce34e08c 2018-01-21 23:39 UTC+5:30 2018-01-21 23:39 UTC+5:30 0 bytes 2018-01-21 22:13 UTCH
2018/01/21/[$LATEST]4a04a6e78e834caea812a8b2dbcf22ff 2018-01-21 22:12 UTC+5:30 2018-01-21 22:12 UTC+5:30 0 bytes 2018-01-21 15:02 UTCH
2018/01/21/[$LATEST]b05e685dc6b4b2f82863098ed22236f 2018-01-21 15:02 UTC+5:30 2018-01-21 15:02 UTC+5:30 0 bytes 2018-01-21 07:47 UTCH
2018/01/20/[$LATEST]5¢1e67dd6fb849d3910115dchbf7809eb 2018-01-21 07:47 UTC+5:30 2018-01-21 07:47 UTC+5:30 0 bytes 2018-01-20 23:56 UTCH
2018/01/20/[$LATEST]e774acd73a484686b18bf400bad1c863 2018-01-20 23:56 UTC+5:30 2018-01-20 23:56 UTC+5:30 0 bytes 2018-01-20 16:09 UTCH
2018/01/20/[$LATEST]94cfc6283ed447afadf563abb0c67618 2018-01-20 16:09 UTC+5:30 2018-01-20 16:09 UTC+5:30 0 bytes 2018-01-20 08:50 UTC+
2018/01/19/[$LATEST]0fd88f1694aa44b48716f62effbcafd3 2018-01-20 08:49 UTC+5:30 2018-01-20 08:49 UTC+5:30 0 bytes 2018-01-20 02:20 UTCH
2018/01/19/[$LATEST]5af5bbec461347a4bcad21d502a84ba0 2018-01-20 02:19 UTC+5:30 2018-01-20 02:20 UTC+5:30 0 bytes 2018-01-19 19:47 UTCH
2018/01/19/[$LATEST]a046fbb4b5874ab7a1db9671648f93e4 2018-01-19 19:47 UTC+5:30 2018-01-19 19:47 UTC+5:30 0 bytes 2018-01-19 12:59 UTCH
2018/01/19/[$LATEST]dbe9115136c54aafbe76c8245879dc0a 2018-01-19 12:59 UTC+5:30 2018-01-19 13:00 UTC+5:30 0 bytes 2018-01-19 06:50 UTCH
2018/01/18/[$LATEST]b84dd6e6b09048e6b8e2ca26d6a5b3c0 2018-01-19 06:49 UTC+5:30 2018-01-19 06:49 UTC+5:30 0 bytes 2018-01-18 22:56 UTC+
2018/01/18/[$LATEST]0710fd96881a480cba01e642e45b76f7 2018-01-18 22:56 UTC+5:30 2018-01-18 22:56 UTC+5:30 0 bytes 2018-01-18 16:08 UTCH
2018/01/18/[$LATEST]afca54726a7a4deadcc361eb8034cfe 2018-01-18 16:09 UTC+5:30 2018-01-18 16:09 UTC+5:30 0 bytes 2018-01-18 09:09 UTC+
2018/01/17/[$LATEST]a3fcbaf23038403aac8adadefe57e8ea 2018-01-18 09:09 UTC+5:30 2018-01-18 09:10 UTC+5:30 0 bytes 2018-01-18 02:50 UTCH
2018/01/17/[$LATEST]57e2e7b470214695afaf5d4e7fdb5056 2018-01-18 02:51 UTC+5:30 2018-01-18 02:51 UTC+5:30 0 bytes 2018-01-17 20:48 UTC+
2018/01/17/[$LATEST]3aeb54346fff4913bbd3dd28d3bc59e3 2018-01-17 20:47 UTC+5:30 2018-01-17 20:47 UTC+5:30 0 bytes 2018-01-17 14:38 UTCH
2018/01/17/[$LATEST]bcc1e1b5dc024cce9c3e3e8d4d0a6194 2018-01-17 14:39 UTC+5:30 2018-01-17 14:39 UTC+5:30 0 bytes 2018-01-17 06:57 UTCH
2018/01/16/[$LATEST]06efd549538d4f38b73be1756cf3de5d 2018-01-17 06:57 UTC+5:30 2018-01-17 06:57 UTC+5:30 0 bytes 2018-01-16 23:13 UTCH

Logging statements in Lambda

Logging your comments and errors clearly is always a good software practice. So, we shall
now understand how to log from inside of Lambda functions. There are broadly two ways
of logging inside Lambda functions. We shall now learn and understand them via examples
from the following steps:

1. The first way is to use Python's 1ogging library. This is widely used as a
standard practice for logging in Python scripts. We shall edit the code we have
written previously for the serverless API and add in the logging statements in it.
The code will look like this:

[160]

Logging and Monitoring Chapter 5

serverless_api Qualifiers v H Actions ¥ Select a test event.. v m

B, 2
:,:, v serverless-api B8 lambda_function *
§ > lambda_function.py 1 import logging
B 2 logger = logging.getLogger()
wi 3 logger.setLevel(logging.INF0)
4
5
6 def lambda_handler(event, context):
7 mobs = {
8 "Sea": ["GoldFish", "Turtle", "Tortoise", "Dolphin", "Seal"],
9 "Land": ["Labrador", "Cat", "Dalmatian", "German Shepherd",
10 "Beagle", "Golden Retriever"],
11 "Exotic": ["Iguana", "Rock Python"]
12 }
13
14 logger.info('got event{}'.format(event))
15 logger.error('something went wrong')
16
17 return 'Hello from Lambda!’
18 #return {"type": mobs[event['type']]}

13:5 Python Spaces: 4 'O'

The code which is in the preceding screenshot is as follows:

import logging
logger = logging.getLogger ()
logger.setLevel (logging.INFO)
def lambda_handler (event, context):
mobs = {
"Sea": ["GoldFish", "Turtle", "Tortoise", "Dolphin", "Seal"],
"Land": ["Labrador", "Cat", "Dalmatian", "German Shepherd",
"Beagle", "Golden Retriever"],
"Exotic": ["Iguana", "Rock Python"]
}

logger.info('got event{}'.format (event))
logger.error ('something went wrong')

return 'Hello from Lambda!'
#return {"type": mobs[event['type']l]}

[161]

Logging and Monitoring

Chapter 5

2. Now, when you run the Lambda function after saving, you can see a successful
execution statement in green color, which looks like this:

v Designer

6]
Lambda Functions serverless-api ARN - arn:aws:lambda:us-east-1:080983167913:function:serverless-api
serverless-api Qualifiers ¥ H Actions ¥ Test v
© Execution result: succeeded (logs) X
Ib Details
Configuration Monitoring

Add triggers ‘p
Click on a trigger from the list below ||I1 serverless-api
to add it to your function. 1 @© Saved
AP| Gateway
L. Cloudwatch Events @ Al
AWS loT
Alexa Skills Kit .1; API Gateway
w3

m AWS CloudFormation

3. When you click on the Details option, you can see the logging statements being

executed clearly:

Lambda Functions serverless-api ARN - arn:aws:lambda:us-east-1:080983167913:function:serverless-api

serverless-api Qualifiers v | [Actions v

Test v

®

© Execution result: succeeded (logs)
¥ Details

The area below shows the result returned by your function execution.

"Hello from Lambda!"

Memory Used: 19 MB

Summary
Code SHA-256 PLeHapzCs2IKoZkaAFlh/Cu6Fbg3B610Ktg+HOKEYmQ= Request ID 2381d9be-fed9-11e7-8e77-6387067fdb87
Duration 0.55ms Billed duration 100 ms
Resources configured 128 MB Max memory used 19 MB
Log output
The area below shows the logging calls in your code. These correspond to a single row within the C| h log group cor ing to this Lambda function.
Click here to view the CloudWatch log group.
START RequestId: 2381d9be-fed9-11e7-8e77-6387067fdb87 Version: SLATEST
[INFO] 2018-01-21T18:30:21.698Z 2381d9be-fedd-11e7-8e77-6387067fdb87 got event{u'key3': u'value3', u'key2': u'value2', u'keyl':
u'valuel'}
[ERROR] 2018-01-21T18:30:21.699Z 2381d9be-fedd-11e7-8e77-6387067fdb87 something went wrong
END RequestId: 2381d9be-fed9-1le7-8e77-6387067fdb87
REPORT RequestId: 2381d9be-fedd-1le7-8e77-6387067fdb87 Duration: .55 ms Billed Duration: 100 ms Memory Size: 128 MB Max

[162]

Logging and Monitoring Chapter 5

4. The next way of logging statements is by simply using the print statements in
Python. It is the most common way of printing out logging statements in Python
scripts. So, we shall add a Hello from Lambda print statement in our function
code and see if we get the logs in our Lambda execution or not:

serverless-api [Qualifiers v H Actions v] Test v m

AWS Cloud9 File Edit Find View Goto Tools Window 2 o)
:,E, v serverless-api E o 3 | lambda_function x
13
§ lambda_function.py 1 def lambda_handler(event, context):
2 2 mobs = {
w 3 "Sea": ["GoldFish", "Turtle", "Tortoise", "Dolphin", "Seal"],
4 "Land": ["Labrador", "Cat", "Dalmatian", "German Shepherd",
5 "Beagle", "Golden Retriever"],
6 "Exotic": ["Iguana", "Rock Python"]
7
8
9
10 print 'Hello from Lambda!"'
1 return
12 #return {"type": mobs[event['type']]}

11:13 Python Spaces: 4 £}

The code for this Lambda function is as follows:

def lambda_handler (event, context):
mobs = {
"Sea": ["GoldFish", "Turtle", "Tortoise", "Dolphin", "Seal"],
"Land": ["Labrador", "Cat", "Dalmatian", "German Shepherd",
"Beagle", "Golden Retriever"],
"Exotic": ["Iguana", "Rock Python"]
}
print 'Hello from Lambda!'
return 1
#return {"type": mobs[event['type']l]}

[163]

Logging and Monitoring Chapter 5

5. When we click on Test for executing the code, we should see a green color
message, which indicates a successful execution:

Lambda Functions serverless-api ARN - arn:aws:lambda:us-east-1:080983167913:function:serverless-api

serverless-api qualifiers v | [Actions v Test v

© Execution result: succeeded (logs) X
» Details
Configuration Monitoring

v Designer

Add triggers p
Click on a trigger from the list below |||ﬂ serverless-api
to add it to your function @© saved
API Gateway
Il Cloudwatch Events $ All
AWS loT ~
Alexa Skills Kit :1: API Gateway m AWS CloudFormation

Alexa Smart Home

6. Again, just like we did previously, clicking on the Details toggle will give you the
complete execution logs:

1l
©

serverless-api Qualifiers v | [Actions v Test v

@ Execution result: succeeded (logs)

¥ Details

The area below shows the result returned by your function execution.

1

Summary

Code SHA-256 1vW6H2HdrhpulSZtd1v+LVBgJenZDCLRusPoRBsOaGl= Request ID 7f36c1ab-feda-11e7-b5dc-2fc330d35f0b
Duration 3591 ms Billed duration 100 ms

Resources configured 128 MB Max memory used 19 MB

Log output

The area below shows the logging calls in your code. These correspond to a single row within the CloudWatch log group corresponding to this Lambda function.
Click here to view the CloudWatch log group.

START RequestId: 7f36clab-feda-11e7-bSdc-2fc33@d35f@b Version: SLATEST

Hello from Lambda!

END RequestId: 7f36clab-feda-1le7-b5dc-2fc330d35f0b

REPORT RequestId: 7f36clab-feda-11e7-bSdc-2fc330d35f@b Duration: 35.91 ms Billed Duration: 100 ms Memory Size: 128 MB Max
Memory Used: 19 MB

[164]

Logging and Monitoring Chapter 5

7. We can see the Hello from Lambda message too. Out of the two available
logging options for our Lambda functions, it is always preferable to use the first
option which is via the Python's logging module. This is because that module
gives greater flexibility and helps you differentiate between info, error, and
debug logs.

Summary

In this chapter, we have learned about the monitoring and the logging capabilities of AWS.
We also learned about the available monitoring and logging tools inside the AWS
environment. We have also learned how to monitor our Lambda functions and how to set
up logging for our Lambda functions.

We have learned about the logging and monitoring practices that are followed by the
industry and the various ways one can log statements in Python from inside of a Lambda
function.

In the next chapter, we will learn how to scale up our serverless architectures to become
distributed and to be able to handle massive workloads while still preserving the positives
of a serverless setup.

[165]

Scaling Up Serverless
Architectures

So far, we have learned how to build, monitor, and log serverless functions. In this chapter,
we will be learning concepts and engineering techniques that will help scale up serverless
applications to be distributed, and that will also enable them to handle heavy workloads
with high standards of security and throughput. In this chapter, we will also use some
third-party tools, such as Ansible, to scale up our Lambda functions. We will be scaling up
our Lambda functions to spawn a distributed serverless architecture, which will involve
spawning multiple servers (or instances in the AWS environment). You therefore need to
keep that in mind while following the examples mentioned in this chapter.

This chapter assumes a working knowledge of a provisioning tool, such as Ansible, Chef,
and so on. You can quickly read up on or refresh your knowledge of these on their
respective sites, where they have quick tutorials. If not, then you can safely skip this chapter
and move on to the next.

This chapter consists of five sections, which cover all of the basics of scaling up serverless
architectures and will set you up for building bigger, complex serverless architectures:

Third-party orchestration tools
The creation and termination of servers

Security best practices

Difficulties of scaling up

Handling difficulties

Scaling Up Serverless Architectures Chapter 6

Third-party orchestration tools

In this section, we will learn and become versed in the concept of infrastructure
provisioning and orchestration. We will be exploring a couple of tools, namely Chef and
Ansible. Let's get started by following these steps:

1. We will begin with getting introduced to Chef. You can visit the official website
of Chef at https://www.chef.io/chef/:

EVENTS BLOG SUPPORT ACCOUNT MANAGEMENT CONSOLE Q

|\f,\‘ CHEF PRODUCTS SOLUTIONS PARTNERS LEARNING COMMUNITY ABOUT GET STARTED

CHEF

Achieve speed, scale, and consistency by automating
your infrastructure with Chef

LEARN CHEF > DOWNLOAD CHEF >

Turn your infrastructure into code

With Chef you can manage servers - 5 or 5,000 of them - by turning your infrastructure into code. Time-consuming activities like
manual patching, configuration updates, and service installations for every server will no longer exist. And your Infrastructure becomes
flexible, version-able, human-readable, and testable.

2. Chef has a very good set of tutorials for getting your hands dirty. These are
organized in the form of mini 10 to 15 minute tutorials for easy consumption.
Head over to https://learn.chef.io/ to access them:

[167]

https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://learn.chef.io/
https://learn.chef.io/
https://learn.chef.io/
https://learn.chef.io/
https://learn.chef.io/
https://learn.chef.io/
https://learn.chef.io/
https://learn.chef.io/
https://learn.chef.io/
https://learn.chef.io/

Scaling Up Serverless Architectures

Chapter 6

LEARN CHEF

TRACKS MODULES LOGIN

From Chef to Continuous
Automation to DevOps -
satisfy your hankerin' to
learn more.

watch video

3. For getting started with infrastructure provisioning and orchestrating, you can
refer to the Chef documentation here: https://docs.chef.io/. The page looks

like this:

LEARN CHEF TUTORIALS

| Overview

= | Chef

@ | Habitat

o | InSpec

&5 | Chef Automate
8 | Legacy

| Extension APIs

Available on GitHub

Get Chef

Send Feedback

Support

Site Map

Archive

SKILLS LIBRARY DOCS TRAINING

Site Map

©

Table Of Contents

[edit on GitHub]

This is the documentation for:

+ Chef, including the Chef server, the Chef client, the Chef development kit (Chef DK) and related tools
+ Chef Automate

For information on Habitat and InSpec, see their respective documentation:

« Habitat documentation
« InSpec documentation

This page has links to each topic in this doc set. You can also use the navigation tool or the search box to find
what you’re looking for.
If this is your first visit, check out the Getting Started track on Learn Chef.

If you need documentation for previous versions, see the Docs Archive.

Overview

Platform Overview

Platform Overview

Community

Site Map
s Overview
« Platform Overview
« Community
« Packages and Platforms
e Chef
« Getting Started
+ Concepts
« Setup
+ Cookbook Reference
o Chef DK
* Managing the Server
Habitat
+ Documentation
« Tutorials
InSpec
« Documentation
+ Tutorials
Chef Automate
« Overview
« Getting Started
+ Release Notes
+ Nodes
« Compliance
* Workflow

Admin
Managing the Server
Reference
AWS OpsWorks for Chef
Automate

[168]

https://docs.chef.io/
https://docs.chef.io/
https://docs.chef.io/
https://docs.chef.io/
https://docs.chef.io/
https://docs.chef.io/
https://docs.chef.io/
https://docs.chef.io/
https://docs.chef.io/
https://docs.chef.io/

Scaling Up Serverless Architectures Chapter 6

4. You can refer to the AWS Driver Resources page in the documentation to
understand how to interact with various AWS services via Chef at: https://
docs.chef.io/provisioning_aws.html. The page looks like this:

LEARN CHEF TUTORIALS SKILLS LIBRARY DOCS TRAINING @
M AWS Driver Resources feble Of Gontents
& | Overview v
= | Chef ~ o
Getting Started - This functionality is available with Chef ing and is in the Chef d kit. Chef provisioning is a N
framework that allows clusters to be managed by the chef-client and the Chef server in the same way nodes are °
Concepts - managed: with recipes. Use Chef provisioning to describe, version, deploy, and manage clusters of any size and *
complexity using a common set of tools. *
Setup v .
Chef provisioning is a collection of resources that enable the creation of machines and machine infrastructures .
Cookbook Reference v using the chef-client. It has a plugin model that allows bootstrap operations to be done against any infrastructure, .
such as VirtualBox, DigitalOcean, Amazon EC2, LXC, bare metal, and more. .
Chef DK A

Chef provisioning is built around two major components: the machine resource and drivers.

About the ChefDK . - . : :
ou © e A driver-specific resource is a statement of configuration policy that: .

Berkshelf

Describes the desired state for a configuration item that is created using Chef provisioning .
Declares the steps needed to bring that item to the desired state
Specifies a resource type—such as package, template, or service
Lists additional details (also known as properties), as necessary

Are grouped into recipes, which describe working configurations

chef-apply (executable)

chef-shell (executable)

chef (executable) v
The following driver-specific resources are available for Amazon Web Services (AWS) and Chef provisioning:
Chef Solo v

* aws_auto_scalin rou
chef-shell (executable) - - g-group

« aws_cache_cluster .
chefivault « aws_cache_replication_group .
« aws_cache_subnet_group .

5. You can also refer to the aws Cookbook for the same purpose, too. This resource
has very good documentation and APIs for interacting with several AWS
services. The URL of this documentation is https://supermarket.chef.io/
cookbooks/aws. The page looks like this:

[169]

https://docs.chef.io/provisioning_aws.html
https://docs.chef.io/provisioning_aws.html
https://docs.chef.io/provisioning_aws.html
https://docs.chef.io/provisioning_aws.html
https://docs.chef.io/provisioning_aws.html
https://docs.chef.io/provisioning_aws.html
https://docs.chef.io/provisioning_aws.html
https://docs.chef.io/provisioning_aws.html
https://docs.chef.io/provisioning_aws.html
https://docs.chef.io/provisioning_aws.html
https://docs.chef.io/provisioning_aws.html
https://docs.chef.io/provisioning_aws.html
https://docs.chef.io/provisioning_aws.html
https://docs.chef.io/provisioning_aws.html
https://supermarket.chef.io/cookbooks/aws
https://supermarket.chef.io/cookbooks/aws
https://supermarket.chef.io/cookbooks/aws
https://supermarket.chef.io/cookbooks/aws
https://supermarket.chef.io/cookbooks/aws
https://supermarket.chef.io/cookbooks/aws
https://supermarket.chef.io/cookbooks/aws
https://supermarket.chef.io/cookbooks/aws
https://supermarket.chef.io/cookbooks/aws
https://supermarket.chef.io/cookbooks/aws
https://supermarket.chef.io/cookbooks/aws
https://supermarket.chef.io/cookbooks/aws

Scaling Up Serverless Architectures Chapter 6

TOOLS & PLUGINS MORE INFC CREAT

£:CHEF

(66) Versions 722 w

Berkshelf/Librarian

DETAILS

cookbook 'aws', '~> 7.2.2'

View Issues

README C UPDATED NOVEMBER 14, 2017

6. A detailed description of the cookbook can be seen when you scroll down,
directly after the title of the cookbook:

aws Cookbook “O®0CO~sHa~O~

LICENSE
build |passing | cookbook v7.2.2

This cookbook provides resources for configuring and managing nodes running in Amazon Web Download Cookbook

Services as well as several AWS service offerings. Included resources:

CloudFormation Stack Management (cloudformation_stack)
CloudWatch (cloudwatch)

CloudWatch Instance Monitoring (instance_monitoring)
DynamoDB (dynamodb_table)

EBS Volumes (ebs_volume)

EC2 Instance Termination Protection (instance_term protection)

Elastic IPs (elastic_ip)

Elastic Load Balancer (elastic_1b)

IAM User, Group, Policy, and Role Management: (iam_user , iam group, iam policy,
iam_role)

Kinesis Stream Management (kinesis_stream)

Resource Tags (resource_tag)

Route53 DNS Records (route53_record)

Route53 DNS Zones (route53_zone)

S3 Files (s3_file)

S3 Buckets (s3_bucket)

Secondary IPs (secondary_ip)

[170]

Scaling Up Serverless Architectures

Chapter 6

7. One other good tool for provisioning and orchestrating software resources is
Ansible. This helps software engineers write code for automating several parts of
their infrastructure via yaml scripts. Similar to the Chef environment, these scripts

are called cookbooks.

8. We will be using this tool for learning how to provision our infrastructure in the
subsequent sections. The documentation for Ansible can be found at http://

docs.ansible.com/:

@ Documentation

ANSIBLE CORE

Simple, agentless and powerful open source IT automation.

Quick Start Video

Ansible Documentation

POPULAR TOPICS

ANSIBLEFEST PRODUCTS COMMUNITY WEBINARS & TRAINING BLOG

ANSIBLE TOWER

Powers enterprise automation by adding control, security and
delegation capabilities to Ansible environments.

Overview Video

ki llation Guide
ower Quicl sta ™
ower Quick Setup Guide
HTML

9. The product, ANSIBLE TOWER, is out of scope for this book. We will be
learning and be working with ANSIBLE CORE, which is the flagship product of
Ansible and its parent company, Red Hat.

10. Ansible has a very helpful video for helping you better understand and make
sense of the tool. It can be accessed when you click on the Quick Start Video link

in the documentation page:

[171]

http://docs.ansible.com/
http://docs.ansible.com/
http://docs.ansible.com/
http://docs.ansible.com/
http://docs.ansible.com/
http://docs.ansible.com/
http://docs.ansible.com/
http://docs.ansible.com/
http://docs.ansible.com/

Scaling Up Serverless Architectures Chapter 6

NSIBLE OVERVIEW ~ PRODUCTS ~ RESOURCES ~ COMMUNITY

IN THIS VIDEO ANSIBLE

What is Ansible?

What can Ansible do?
Where to get Ansible
Ansible language basics
Using Ansible

Ansible Tower by Red Hat

Ansible Galaxy

‘ redhat

11. After watching the video, you can proceed to understand the product from the
documentation itself. The complete documentation of Ansible can be accessed
at: http://docs.ansible.com/ansible/latest/index.html:

ANSIBLEFEST ~ PRODUCTS ~ COMMUNITY WEBINARS&TRAINING ~ BLOG

@ Documentation

Docs » Ansible Documentation © Edit on GitHub

Ansible Documentation

For previous versions, see the
documentation archive.

About Ansible

Introduction

ickstart Vid;
QuiCCLItV e Welcome to the Ansible documentation!

Playbooks
Playbooks: Special Topics Ansible is an IT automation tool. It can configure systems, deploy software, and orchestrate more advanced IT tasks such as

About Modules continuous deployments or zero downtime rolling updates.

Module Index
Ansible’s main goals are simplicity and ease-of-use. It also has a strong focus on security and reliability, featuring a minimum of

Ansible Vault moving parts, usage of OpenSSH for transport (with an accelerated socket mode and pull modes as alternatives), and a
Command Line Tools language that is designed around auditability by humans-even those not familiar with the program.

Detailed Guides

We believe simplicity is relevant to all sizes of environments, so we design for busy users of all types: developers, sysadmins,
release engineers, IT managers, and everyone in between. Ansible is appropriate for managing all environments, from small
setups with a handful of instances to enterprise environments with many thousands of instances.

Developer Information

Ansible Tower

Community Information & Contributing

[172]

http://docs.ansible.com/ansible/latest/index.html
http://docs.ansible.com/ansible/latest/index.html
http://docs.ansible.com/ansible/latest/index.html
http://docs.ansible.com/ansible/latest/index.html
http://docs.ansible.com/ansible/latest/index.html
http://docs.ansible.com/ansible/latest/index.html
http://docs.ansible.com/ansible/latest/index.html
http://docs.ansible.com/ansible/latest/index.html
http://docs.ansible.com/ansible/latest/index.html
http://docs.ansible.com/ansible/latest/index.html
http://docs.ansible.com/ansible/latest/index.html
http://docs.ansible.com/ansible/latest/index.html
http://docs.ansible.com/ansible/latest/index.html
http://docs.ansible.com/ansible/latest/index.html
http://docs.ansible.com/ansible/latest/index.html
http://docs.ansible.com/ansible/latest/index.html
http://docs.ansible.com/ansible/latest/index.html

Scaling Up Serverless Architectures Chapter 6

12. The EC2 module is the one we will be using for provisioning and orchestrating
our AWS EC2 instances. This part of the documentation has a very clear
explanation and demonstration of starting up and terminating EC2 instances,
along with adding and mounting volumes; it also enables us to provision our
EC2 instances into our own specific Virtual Private Cloud (VPC) and/or in our
own Security Groups (SGs). The EC2 documentation screen looks like this:

ANSIBLEFEST ~ PRODUCTS ~ COMMUNITY WEBINARS&TRAINING BLOG

@ Documentation
Docs »ec2 - create, terminate, start or stop an instance in ec2

For previous versions, see the
documentation archive.

ec2 - create, terminate, start or stop an instance in ec2

Synopsis
Introduction vnop

.

Requirements (on host that executes module)
Quickstart Video

« Options
Playbooks o Examples
Playbooks: Special Topics + Notes
o Status

About Modules

o Maintenance Info
Module Index

All Modules Synopsis
Cloud Modules

« Creates or terminates ec2 instances.
* staterestarted Was added in 2.2

Clustering Modules
Commands Modules
Crypto Modules

Requirements (on host that executes module)

Database Modules

Files Modules e python>=26 Q_ Search this site

[173]

Scaling Up Serverless Architectures Chapter 6

13. You can find this at the following URL of Ansible Core's documentation: http://
docs.ansible.com/ansible/latest/ec2_module.html. When you scroll down
further, you can see several examples of how to use the EC2 module of Ansible
for various tasks concerning AWS EC2 instances. Some of them can be seen as
follows:

Examples

Note: These examples do not set authentication details, see the AWS Guide for details

Basic provisioning example
- ec2:
key_name: mykey
instance_type: t2.micro
image: ami-123456
wait: yes
group: webserver
count: 3
vpc_subnet_id: subnet-29e63245
assign_public_ip: yes

Advanced example with tagging and CloudWatch
- ec2:

key_name: mykey

group: databases

instance_type: t2.micro

image: ami-123456

wait: yes

wait_timeout: 500

count: 5

instance_tags:

db: postgres

monitoring: yes

vpc_subnet_id: subnet-29e63245

assign_public_ip: yes

Single instance with additional IOPS volume from snapshot and volume delete on terr

- ec2:

key_name: mykey
group: webserver Q Search this site

[174]

http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html

Scaling Up Serverless Architectures

Chapter 6

The creation and termination of servers

In this chapter, we will learn how to use some third-party tools that will help us in building
the required architecture. Like all of the sections in this chapter, the information will be

broken down into steps:

1. The first tool we will be learning about is Ansible. It is a provisioning and
orchestrating tool, that helps in automating several parts of an infrastructure.
Depending on when you are reading this book, the Ansible project's homepage

(https://www.ansible

.com/) will look something like this:

ANSIBLE OVERVIEW ~ PRODUCTS ~ RESOURCES ~ COMMUNITY

AUTOMATION FOR EVERYONE

Ansible is designed around the way people
work and the way people work together.

WHY ANSIBLE? GET STARTED

2. The installation process for Ansible is different for different operating systems.
The instructions for some popular operating systems are as follows:

e For Ubuntu:

sudo
sudo
sudo
sudo
sudo

apt—get update

apt—get install software-properties—common
apt—add-repository ppa:ansible/ansible
apt—get update

apt—get install ansible

[175]

https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/

Scaling Up Serverless Architectures Chapter 6

e For Linux:

git clone https://github.com/ansible/ansible.git
cd ./ansible

make rpm

sudo rpm -Uvh ./rpm-build/ansible-*.noarch.rpm

e For OS X:

sudo pip install ansible

3. Now, we will understand the concept of nohup. So, you don't need to have a
persistent SSH connection to the server for making a nohup command run,
therefore we will be using this technique for running our master—server
architecture (to know more about nohup refer to: https://en.wikipedia.org/
wiki/Nohup).

Let's look at its definition on Wikipedia (from the time of writing this
book), nohup is a POSIX command to ignore the HUP (hangup) signal.
The HUP signal is, by convention, the way a terminal warns dependent
processes of logout.

4. We will now learn how to provision servers from Ansible, SSH into them, run a
simple apt-get update task in them, and terminate them. From this, you will
learn how to write Ansible scripts, as well as understand how Ansible handles
the provisioning of cloud resources. The following Ansible script will help you
understand how to provision an EC2 instance:

- hosts: localhost
connection: local
remote_user: test
gather_facts: no

environment:
AWS_ACCESS_KEY_ID: "{{ aws_id }}"
AWS_SECRET_ACCESS_KEY: "{{ aws_key }}"

AWS_DEFAULT_REGION: "{{ aws_region }}"

tasks:
— name: Provisioning EC2 instaces
ec2:
assign_public_ip: no
aws_access_key: "{{ access_key }}"
aws_secret_key: "{{ secret_key }}"

[176]

https://en.wikipedia.org/wiki/Nohup
https://en.wikipedia.org/wiki/Nohup
https://en.wikipedia.org/wiki/Nohup
https://en.wikipedia.org/wiki/Nohup
https://en.wikipedia.org/wiki/Nohup
https://en.wikipedia.org/wiki/Nohup
https://en.wikipedia.org/wiki/Nohup
https://en.wikipedia.org/wiki/Nohup
https://en.wikipedia.org/wiki/Nohup
https://en.wikipedia.org/wiki/Nohup
https://en.wikipedia.org/wiki/Nohup
https://en.wikipedia.org/wiki/Nohup

Scaling Up Serverless Architectures Chapter 6

region: "{{ aws_region }}"
image: "{{ image_instance }}"
instance_type: "{{ instance_type }}"
key_name: "{{ ssh_keyname }}"
state: present
group_id: "{{ security_group }}"
vpc_subnet_id: "{{ subnet }}"
instance_profile_name: "{{ Profile_Name }}"
wait: true
instance_tags:

Name: "{{ Instance_Name }}"
delete_on_termination: yes
register: ec2
ignore_errors: True

The values in the {{ }} brackets need to be filled in as per your convenience and
specifications. The preceding code will create an EC2 instance in your console and
name it, as per the specification which is given in the {{ Instance_Name

} } section.

5. The ansible. cfq file should include all of the details which give instructions
about the control path, the details regarding the forwarding agent, and also the
path to the EC2 instance key. The ansible. cfq file should look like this:

[ssh_connection]
ssh_args=-o ControlMaster=auto -o ControlPersist=60s -o
ControlPath=/tmp/ansible-ssh-%h-%p-%r -o ForwardAgent=yes

[defaults]
private_key file=/path/to/key/key.pem

[177]

Scaling Up Serverless Architectures Chapter 6

6. When you execute this code using ansible-playbook -vvv < name-of-
playbook >.yml, you can see the EC2 instance being created in your EC2
console:

EC2 Dashboard ‘ Launch Instance v Actions v Q O %

Events

Tags ‘} Filter by tags and attributes or search by keyword Q 1to1of1
Reports

[] Name I D - Type ilability Zone Inst: State Status Checks Alarm Status Public DNS
Limits

- i-068608d5df42a73a8 t2.micro us-east-1a pending Z Initializing None “s ec2-34-226-1

NCES
Instances

Launch Templates
Spot Requests
Reserved Instances
Dedicated Hosts

Scheduled Instances

AMIs
Bundle Tasks

7. Now, we will terminate the instance which we have just created via Ansible. This
will also be done in an Ansible script, similar to how we provisioned the instance.
The following code does this:

tasks:
— name: Terminate instances that were previously launched
connection: local
become: false
ec2:
state: 'absent'
instance_ids: '{{ ec2.instance_ids }}"'
region: '{{ aws_region }}'
register: TerminateWorker
ignore_errors: True

[178]

Scaling Up Serverless Architectures Chapter 6

8. So, now you can see the instance being terminated in the console. Note that the
code is the same up until the tasks, such as provisioning and terminating
instances, so you can copy and paste from the provisioning task:

EC2 Dashboard 1
Launch Instance v Actions v Q o & 0

Events

Tags Q), Filter by tags and attributes or search by keyword (2] 1to1of1
Reports

@ Name Instance ID - Instance Type Availability Zone Instance State Status Checks Alarm Status Public DNS (IPv4)
Limits

[] i-068608d5df42a73a8 t2.micro us-east-1a W terminated None %

Instances

Launch Templates
Spot Requests
Reserved Instances
Dedicated Hosts

Scheduled Instances

AMIs
Bundle Tasks

Volumes Instance: | i-068608d5df42a73a8 Public DNS: - _ =]

Snapshots
Description Status Checks Monitoring Tags

Security Groups Instance ID -068608d5df42a73a8 Public DNS (IPv4)
Elastic IPs Instance state terminated IPv4 Public IP
Instance type t2.micro IPv6 IPs

Placement Groups
Elastic IPs Private DNS

So, we have successfully learned how to provision and terminate EC2 instances
via an Ansible script. We will use this knowledge for provisioning and will be
terminating EC2 instances at the same time.

9. Making a small change to the provisioning code in the yaml script we used
previously, we can provision multiple servers (EC2 instances) at the same time,
by simply adding the count parameter. The following code will provision the
number of instances mentioned in the jinja template, beside the count parameter.
In our example, itis ninstances:

— hosts: localhost
connection: local
remote_user: test
gather_facts: no

environment:
AWS_ACCESS_KEY_ID: "{{ aws_id }}"
AWS_SECRET_ACCESS_KEY: "{{ aws_key }}"

[179]

Scaling Up Serverless Architectures

Chapter 6

AWS_DEFAULT_REGION: "{{ aws_region }}"

tasks:
— name: Provisioning EC2 instaces

ec2:
assign_public_ip: no
aws_access_key: "{{ access_key }}"
aws_secret_key: "{{ secret_key }}"
region: "{{ aws_region }}"
image: "{{ image_instance }}"
instance_type: "{{ instance_type }}"
key_name: "{{ ssh_keyname }}"
count: "{{ ninstances }}"

state: present
group_id: "{{ security_group }}"
vpc_subnet_id: "{{ subnet }}"
instance_profile_name: "{{ Profile_Name }}"
wait: true
instance_tags:

Name: "{{ Instance_Name }}"
delete_on_termination: yes
register: ec2

10. Now, as we have our Ansible script ready, we will now use it to start our
infrastructure from the Lambda function. For that, we will make use of our

knowledge of nohup.

11. In your Lambda function, all you need to do is to write the logic for creating a
server, and then do some basic installations using the library, paramiko, and

then run the Ansible script in a nohup mode, as shown here:

import paramiko
import boto3
import logging

logger = logging.getLogger (__name__)
logger.setLevel (logging.CRITICAL)

region = 'us-east-1'
image = 'ami-<>'
ubuntu_image = 'ami-<>'
keyname = '<>'

def lambda_handler (event, context):
credentials = {<>}

k = paramiko.RSAKey.from_private_key_file("<>")

c = paramiko.SSHClient ()

c.set_missing_host_key_policy (paramiko.AutoAddPolicy())

logging.critical ("Creating Session")

[180]

Scaling Up Serverless Architectures Chapter 6

session = boto3.Session(credentials|['AccessKeyId'],

credentials|['SecretAccessKey'],

aws_session_token=credentials|['SessionToken'],
region_name=region)

logging.critical ("Created Session")

logging.critical ("Create Resource")

ec2 = session.resource('ec2', region_name=region)

logging.critical ("Created Resource")

logging.critical ("Key Verification")

key = "'<>!

k = paramiko.RSAKey.from_ private_key_file (key)

c = paramiko.SSHClient ()

c.set_missing_host_key_policy (paramiko.AutoAddPolicy())
logging.critical ("Key Verification done")

Generate Presigned URL for downloading EC2 key from an
S3 bucket into master
s3client = session.client ('s3"'")

Presigned url for downloading pem file of the server from an

S3 bucket
url = s3client.generate_presigned_url ('get_object',
Params={"'Bucket': '<bucket_name>', 'Key':

'<file_name_of_key>'},
ExpiresIn=300)
command = 'wget ' + '-O <>.pem ' + "'" 4+ url + "'"
logging.critical ("Create Instance")
while True:
try:
logging.critical ("Trying")
c.connect (hostname=dns_name, username="ubuntu", pkey=k)
except:
logging.critical ("Failed")
continue
break
logging.critical ("connected")

if size == 0:
s3client.upload_file('<>.pem', '<bucket_name>"',
'<>.pem')
else:
pass
set_key = credentials|['AccessKeyId']
set_secret = credentials|['SecretAccessKey']
set_token = credentials|['SessionToken']

Commands to run inside the SSH session of the server
commands = [command,

[181]

Scaling Up Serverless Architectures Chapter 6

"sudo apt-get -y update",

"sudo apt-add-repository -y ppa:ansible/ansible",

"sudo apt-get -y update",

"sudo apt-get install -y ansible python-pip git awscli",
"sudo pip install boto markupsafe boto3 python-dateutil
futures",

"ssh-keyscan -H github.com >> ~/.ssh/known_hosts",

"git clone <repository where your ansible script is>
/home/ubuntu/<>/",

"chmod 400 <>.pem",

"cd <>/<>/; pwd ; nohup ansible-playbook -vvv provision.yml >
ansible.out 2> ansible.err < /dev/null &"]

Running the commands
for command in commands:
logging.critical ("Executing %s", command)
stdin, stdout, stderr = c.exec_command (command)
logging.critical (stdout.read())
logging.critical ("Errors : %s", stderr.read())
c.close()
return dns_name

Security best practices

Ensuring high-level security has always been a major problem for microservices. There are
multiple levels of software that you need to keep in mind while designing the security
layers. The engineers need to define the security protocols for each of the services and then
also define the protocols for the data interaction and transfer between each service.

You have to keep all these aspects in mind before architecting distributed serverless
systems, where (almost) each Ansible task is a microservice. In this section, we will
understand how to architect the security protocols, and also monitor them using some of
AWS's built-in services.

[182]

Scaling Up Serverless Architectures Chapter 6

We will go through a step-by-step understanding of how to write security protocols for our
serverless architectures:

1. Firstly, whenever you are creating a session inside your AWS Python scripts
using Boto, try to create temporary credentials using the AWS Secure Token
Service (STS), which creates temporary credentials for a specific period of time:

AWS Documentation » AWS Security Token Service » AP| Reference » Welcome

AWS Security Token Service
API Reference (API Version 2011-06-15) Q Welcome

Documentation - This Guide The AWS Security Token Service (STS) is a web service that enables you to request temporary, limited-privilege

B
Search B credentials for AWS Identity and Access Management (IAM) users or for users that you authenticate (federated
O Welcome users). This guide provides descriptions of the STS API. For more detailed information about using this service, go to
Temporary Security Credentials.
2 Actions
O AssumeRole Note
As an alternative to using the API, you can use one of the AWS SDKs, which consist of libraries and
sample code for various programming languages and platforms (Java, Ruby, .NET, iOS, Android, etc.). The
O AssumeRoleWithWebldentity SDKs provide a convenient way to create programmatic access to STS. For example, the SDKs take care of
O DecodeAuthorizationMessage cryptographically signing requests, managing errors, and retrying requests automatically. For
information about the AWS SDKs, including how to download and install them, see the Tools for Amazon

Web Services page.

O AssumeRoleWithSAML

O GetCallerldentity

O GetFederationToken
For information about setting up signatures and authorization through the API, go to Signing AWS API Requests in

O GetSessionToken the AWS General Reference. For general information about the Query API, go to Making Query Requests in Using

IAM. For information about using security tokens with other AWS products, go to AWS Services That Work with IAM

in the /AM User Guide.

Data Types

O Common Parameters

O Common Errors If you're new to AWS and need additional technical information about a specific AWS product, you can find the

You can look at the documentation of the STS at: https://docs.aws.
amazon.com/STS/latest/APIReference/Welcome.html.

2. The AssumeRole API of the STS service enables programmers to assumes IAM
roles into their code:

[183]

https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

Scaling Up Serverless Architectures

Chapter 6

AWS Security Token Service
AP Reference (API Version 2011-06-15)

Documentation - This Guide
Search
O Welcome

8 Actions
() AssumeRole

O AssumeRoleWithSAML
O AssumeRoleWithWebldentity
O DecodeAuthorizationMessage
O GetCallerldentity
O GetFederationToken
O GetSessionToken

Data Types

O Common Parameters

0O Common Errors

Q

AWS Documentation » AWS Security Token Service » API Reference » Actions » AssumeRole

AssumeRole

Returns a set of temporary security credentials (consisting of an access key ID, a secret access key, and a security
token) that you can use to access AWS resources that you might not normally have access to. Typically, you use
AssumeRole for cross-account access or federation. For a comparison of AssumeRole with the other APIs that
produce temporary credentials, see Requesting Temporary Security Credentials and Comparing the AWS STS APIs in
the IAM User Guide.

Important: You cannot call AssumeRole by using AWS root account credentials; access is denied. You must use
credentials for an IAM user or an IAM role to call AssumeRole.

For cross-account access, imagine that you own multiple accounts and need to access resources in each account.
You could create long-term credentials in each account to access those resources. However, managing all those
credentials and remembering which one can access which account can be time consuming. Instead, you can create
one set of long-term credentials in one account and then use temporary security credentials to access all the other
accounts by assuming roles in those accounts. For more information about roles, see IAM Roles (Delegation and
Federation) in the IAM User Guide.

For federation, you can, for example, grant single sign-on access to the AWS Management Console. If you already
have an identity and authentication system in your corporate network, you don't have to recreate user identities in
AWS in order to grant those user identities access to AWS. Instead, after a user has been authenticated, you call
AssumeRole (and specify the role with the appropriate permissions) to get temporary security credentials for that

You can find its documentation on the following page: https://docs.aws.
amazon.com/STS/latest/APIReference/API_AssumeRole.html

3. The Python version of this can be referred to, in the bot 03 documentation:

Boto 3 Docs 1.5.36

documentation

TABLE OF CONTENTS

Quickstart

A Sample Tutorial

Code Examples

User Guides

Available Services
ACM
AlexaForBusiness
APIGateway
ApplicationAutoScaling
AppStream
AppSync
Athena
AutoScaling
AutoScalingPlans
Batch

Budgets

Docs / Available Services / STS

STS

Table of Contents

e STS
o Client
o Paginators

Client

class sTS. Client
A low-level client representing AWS Security Token Service (STS):

import boto3

client = boto3.client('sts')

[184]

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

Scaling Up Serverless Architectures Chapter 6

This documentation can be found here: http://boto3.readthedocs.io/

en/latest/reference/services/sts.html.

4. Scrolling down, you can find the usage of the AssumeRole API in Python:

Boto 3 Docs 1.5.36 Request Syntax
documentation
response = client.assume_role(

TABLE OF CONTENTS RoleArn='string’,

Quickstart

A Sample Tutorial

Code Examples

User Guides

Available Services
ACM
AlexaForBusiness
APIGateway
ApplicationAutoScaling
AppStream
AppSync
Athena
AutoScaling
AutoScalingPlans
Batch

Budgets

RoleSessionName='string’,
Policy='string',
DurationSeconds=123,
Externalld='string',
SerialNumber='string',
TokenCode='string'

Parameters
* RoleArn (string) --
[REQUIRED]

The Amazon Resource Name (ARN) of the role to assume.

RoleSessionName (string) --
[REQUIRED]

An identifier for the assumed role session.

Use the role session name to uniquely identify a session when the same role is assumed by
different principals or for different reasons. In cross-account scenarios, the role session name
is visible to, and can be logged by the account that owns the role. The role session name is
also used in the ARN of the assumed role principal. This means that subsequent cross-account
API requests using the temporary security credentials will expose the role session name to the

external account in their CloudTrail logs. _

The regex used to validate this parameter is a string of characters consisting of upper- and

5. Proper care should be taken so that the data exchange between microservices
and/or between the microservices and other AWS resources happens securely
with authentication. For example, the developer can configure S3 buckets to
restrict actions such as unencrypted uploads, downloads, and insecure file
transfers. The bucket policy can be written as follows to ensure all of these things
are taken care of:

"Version": "2012-10-17",
"Id": "PutObjPolicy",
"Statement": [
{
"Sid": "DenyIncorrectEncryptionHeader",
"Effect": "Deny",
"Principal": "*",
"Action": "s3:PutObject",
"Resource": "arn:aws:s3:::<bucket_name>/*",

[185]

http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html

Scaling Up Serverless Architectures Chapter 6

"Condition": {
"StringNotEquals": {
"s3:x-amz-server-side-encryption": "aws:kms"
}
}
"Sid": "DenyUnEncryptedObjectUploads",
"Effect": "Deny",
"Principal": "*",
"Action": "s3:PutObject",
"Resource": "arn:aws:s3:::<bucket_name2>/*",
"Condition": {
"Null": {
"s3:x-amz-server-side-encryption": "true"
}
}
"Sid": "DenyNonSecureTraffic",
"Effect": "Deny",
"Principal": "*",
"Action": "g3:*",
"Resource": "arn:aws:s3:::<bucket_name>/*",
"Condition": {
"Bool": {
"aws:SecureTransport": "false"
}
}
"Sid": "DenyNonSecureTraffic",
"Effect": "Deny",
"Principal": "*",
"Action": "g3:*",
"Resource": "arn:aws:s3:::<bucket_name2>/*",
"Condition": {
"Bool": {
"aws:SecureTransport": "false"
}
}

[186]

Scaling Up Serverless Architectures Chapter 6

6. Once you have finished writing the bucket policy, you can update it in the
Bucket Policy section of S3:

m Permissions
Access Control Li Bucket Policy CORS configuration

Bucket policy editor ARN: arn:aws:s3::

Type to add a new policy or edit an existing policy in the text area below. Save
"Resource"
"Conditior

"arn:aws:s3: : :<bucket_name>/*",

"Bool": {
"aws:SecureTransport": "false"

Documentation Policy generator

7. AWS Config provides a very useful interface for monitoring several security
threats and helps in efficiently avoiding or catching them. The dashboard of AWS
Config looks like this:

AWS Confi -
? Config Dashboard Status @
| Dashboard

Rules
Resources 3 : "

Resources Config rule compliance Resource compliance
Settings

Total resource count 16 N N
What's new @)

Resource types Total 2 n 1 2] 2

Learn More &
=7 EC2 Subnet 6 Noncompliant Noncompliant
ion 2 1 rule(s 1 resource(s)
Documentation (7] s3Bucket 2 (s) (s)
Partners 2
Pricing 2 &3 EC2 SecurityGroup 2 ° °
»

FAQs & & EC2 InternetGateway 1

&2 EG2VPC 1 Noncompliant rules o

El CloudTrail Trail 1 Rule name Compliance

s3-bucket-ssl-requests-only 2 noncompliant resource(s)

] RDS DBSecurityGroup 1

& EC2 RouteTable 1

2 EC2 NetworkAcl 1

[187]

Scaling Up Serverless Architectures

Chapter 6

8. You can see that the dashboard shows 2 non-compliant resource(s) which means
that two of my AWS resources are not complying with the rules that I have put

into config. Let's have a look at these rules:

AWS Config

Dashboard
| Rules

Resources

Settings

What's new €P

Learn More

Documentation (2!
Partners
Pricing &'

FAQs &'

Rules

Status @

Rules represent your desired configuration settings. AWS Config evaluates whether your resource configurations comply with relevant rules and summarizes the

results in the following table.

© Add rule

Compliance status

Rule name

s3-bucket-ssl-requests-only

7 Compliance

2 noncompliant resource(s)

~
=

N Edit rule

4

This means that we have two AWS S3 buckets which do not have SSL requests turned on
via the bucket policy. Once you click on the Rules link, you can see more details which
include the bucket(s) names, and also the timestamps at which these configuration changes
have been recorded:

AWS Config
Dashboard
| Rules
Resources
Settings

What's new @€

Learn More

Documentation (2!
Partners (7'
Pricing &'

FAQs @'

Rules > Rule details

s3-bucket-ssl-requests-only

Description
Trigger type Configuration changes
Scope of changes Resources
Resource types S3 Bucket

Config rule ARN
Parameters null

Overall rule status

arn:aws:config:us-east-1

config-rule/config-rule-nsvbxj

Last successful invocation on February 26, 2018 at 12:36:39 AM &

Last successful evaluation on February 26, 2018 at 12:36:40 AM &

Resources evaluated

Click on the ¢® icon to view configuration details for the resource when it was last evaluated with this rule.

Resource type

S3 Bucket

S3 Bucket

Config timeline ¥

«©

receiver-bucket

Compliance

Noncompliant

sender-bucket Noncompliant

v

Last successful
i i v

Checks whether S3 buckets have policies that require requests to use Secure Socket Layer (SSL).

February 26, 2018
12:36:39 AM

February 26, 2018
12:36:39 AM

Last successful Manage
i v

February 26, 2018 ey

12:36:40 AM

February 26, 2018 2y

12:36:40 AM

[188]

Scaling Up Serverless Architectures Chapter 6

Identifying and handling difficulties in
scaling

Scaling up distributed serverless systems comes with its own set of engineering roadblocks
and problems, and the fact that the concept of serverless systems is still in a very infantile
stage, means that most of those problems are still unsolved. But, that shouldn't stop us from
trying to solve and work around these roadblocks.

We will try and understand some of these roadblocks, and also learn how to solve or work
around them, as discussed here:

e This is more of an architect's mistake rather than a roadblock. However, it is
important to address this as one too many architects/software engineers fell and
fall into the overestimation or the underestimation trap. The problem we will try
to address is the exact number of instances you have to launch when scaling up.
In most self-hosted MapReduce-style systems, it is taken care of out of the box.

e This problem can be taken care of, by properly benchmarking the workloads
beforehand on different types of instances, and scale accordingly. Let's
understand this by taking an example of a machine learning pipeline. Thanks to
our benchmarking efforts, we already know that an m3.medium instance can
handle 100 files in 10 minutes. So, if my workload has 202 files and I want it to be
completed in close to 10 minutes, I would like to have two such instances for
handling this. Even if we don't know the workloads in advance, we can write a
Python script for getting that number from wherever the data is, be it an SQS
queue pointer, or S3, or some other database; and that number can be entered
into the Ansible script and make the playbook run.

¢ As we have already learned about handling security in huge serverless systems,
we will keep this short. There are several complex data movements happening
inside a large distributed serverless workload. Using proper security protocols
and monitoring them, as mentioned in detail in the previous security section, will
help in overcoming this problem.

¢ Logging is a major problem in distributed serverless systems, which is also still
unsolved completely. As the systems and containers are destroyed once the
workload has been completed, logging has been a very difficult task to
undertake. There are several ways you can log the workflow. The most popular
ones are logging every Ansible task separately, and one where the last Ansible
task is to zip up the logs and send the zipped file to a data store, such as S3 or
Logstash. The last one is the most preferred way as it captures the execution flow
better, as the entire log trace is in a single file.

[189]

Scaling Up Serverless Architectures Chapter 6

* Monitoring is similar to logging. Monitoring these systems is also mostly an
unsolved problem. As the servers are all terminated once the workload is run, we
can't poll for historic logs from the servers, and latency also will not be tolerated,
or more precisely, will not be possible. Monitor every task of Ansible by having a
task after each, that sends a custom metric to CloudWatch upon a condition that
the previous task has executed successfully or not. This will look something like
this:

- name: OnDemandProvision on success
command: aws cloudwatch put-metric-data --metric—name OnDemandProvision[M] --namespace Ansible —-value 1
when: ec2|succeeded

— name: OnDemandProvision on failure
command: aws cloudwatch put-metric-data ——metric-name OnDemandProvision[M] ——namespace Ansible —-value @
when: ec2|failed

¢ Debugging trial runs can also become very frustrating, very fast. This is because,
if you are not quick, the entire system can be terminated before you even get a
chance to look at the logs. Also, Ansible emits very verbose logs while
debugging, which might seem overwhelming when spawning several instances.

¢ Some basic Unix hacks can help in handling these problems. The most important
one is to monitor the tail of the log file, about 50 lines or so. This helps in not
getting overwhelmed by the huge amount of logs, and it also keeps an eye on the
execution of the Ansible notebook.

Summary

In this chapter, we have learned how to scale up our serverless architecture(s) to being
massively distributed serverless infrastructure(s). We have learned how to build on our
existing knowledge of building and deploying Lambda infrastructures to handle massive
workloads.

We have learned to use the concept of nohup to use our Lambda function as a launch board
for building a master-worker architecture that takes parallel computing into account. We
have learned how to leverage configuration and orchestration tools, such as Ansible and
Chef, to spawn and orchestrate multiple EC2 instances.

[190]

Scaling Up Serverless Architectures Chapter 6

The knowledge gained from this chapter will open doors for building many complex
infrastructures which can handle data and requests, both in terms of size and speed. This
will allow you to operate multiple microservices closely intertwined together. This will also
help you to build MapReduce-style systems and interact with other AWS services,
seamlessly.

[191]

Security in AWS Lambda

We have learned how to build and configure serverless functions in AWS Lambda. We have
learned how to scale them up using third-party tools. We have also had a close look at how
microservices work and how to ensure security in them, while ensuring resilience and

speed.

In this chapter, we will understand security in the AWS environment, keeping in mind our
Lambda functions. We will understand how services, such as AWS VPCs, security groups,
and subnets work, with respect to Lambda functions.

This chapter covers the following topics:

¢ Understanding AWS VPCs
Understanding subnets in VPCs

Securing Lambda inside private subnets

Controlling access to Lambda functions

Using STS inside Lambda for secure session-based execution

Security in AWS Lambda

Chapter 7

Understanding AWS Virtual Private Clouds

(VPCs)

In this section, we will understand AWS VPCs. VPCs are a very common component in the
security layers of the AWS environment; they are isolated parts of the cloud where users
can host their services and build their infrastructures. VPCs are the first layer of security.
We will try to understand VPCs in the context of Lambda functions, in the form of bullet

points, given here:

1. VPCs can be created and modified in the AWS's VPC service dashboard, which

looks like this:

VPC Dashboard Actions v

Filter by VPC:

Q Search VPCs and their propet X
Q Select a VPC
Name ~ VPCID State
[] vpc-030c8b65 available

Your VPCs

Subnets

Route Tables

Internet Gateways

Egress Only Internet

Gateways

DHCP Options Sets

Elastic IPs

Endpoints

Endpoint Services

NAT Gateways vpc-030c8b65

Peering Connections —_—

Summary CIDR Blocks Flow Logs
VPC ID: vpc-030c8b65
cl State: available

Network ACLS 1Pv4 CIDR: 172.31.0.0/16
Security Groups IPv6 CIDR:

IPv4 CIDR IPv6 CIDR

172.31.0.0/16

Tags

Network ACL:
Tenancy:

DNS resolution:
DNS hostnames:

DHCP options set

dopt-3075f057

acl-72723b14
Default

yes

yes

c &% e

1to10of 1VPC

Route table Network
rtb-59d51020 acl-72723
NN

2. Now, let's quickly learn how to create a VPC of our own. For that, click on Create
VPC. You will see a pop-up box which asks you to enter more meta information

for your new VPC:

[193]

Security in AWS Lambda

Chapter 7

Create VPC X

A VPC is an isolated portion of the AWS cloud populated by AWS objects, such as Amazon EC2
instances. You must specify an IPv4 address range for your VPC. Specify the IPv4 address range as a
Classless Inter-Domain Routing (CIDR) block; for example, 10.0.0.0/16. You cannot specify an IPv4
CIDR block larger than /16. You can optionally associate an Amazon-provided IPv6 CIDR block with the

VPC.
Name tag (i)
IPv4 CIDR block* (i)
IPv6 CIDR block* @ No IPv6 CIDR Block 3)

Amazon provided IPv6 CIDR block

Tenancy | Default 4 @

3. The Name tag box needs to have the name of the VPC. The IPv4 CIDR block is
where you enter your IP range for classless inter-domain routing. Then, you can
choose whether you want an IPv6 CIDR block or not. You can also select the
Tenancy settings; this defines how your EC2 instances run within your VPC, and

the resource sharing accordingly:

A VPC is an isolated portion of the AWS cloud populated by AWS objects, such as Amazon EC2
instances. You must specify an IPv4 address range for your VPC. Specify the IPv4 address range as a
Classless Inter-Domain Routing (CIDR) block; for example, 10.0.0.0/16. You cannot specify an IPv4
CIDR block larger than /16. You can optionally associate an Amazon-provided IPv6 CIDR block with the

VPC.
Name tag Test-VPC (i)
IPv4 CIDR block* | 172.31.0.0/16 (i)
IPv6 CIDR block* @ No IPv6 CIDR Block (i)
Amazon provided IPv6 CIDR block
Tenancy v Default B

Dedicated

Cancel Yes, Create

Create VPC X

[194]

Security in AWS Lambda

Chapter 7

4. We have successfully created our VPC with the necessary settings and with
the Test-vPC name. We can see this in our dashboard with all the corresponding

meta settings:

VPC Dashboard

Filter by VPC:

Q Q Search VPCs and their proper X
Select a VPC

Name ~ VPCID State IPv4 CIDR

Virtual Private Cloud

vpc-030c8b65 available 172.31.0.0/16

Your VPCs e

Test-VPC vpc-56a60a2d available 172.31.0.0/16

Subnets
Route Tables
Internet Gateways

Egress Only Internet
Gateways

DHCP Options Sets
Elastic IPs
Endpoints

Endpoint Services
NAT Gateways vpc-56a60a2d | Test-VPC

Peering Connections
CIDR Blocks

Security
Network ACLs

Security Groups

Summary

VPC ID:
State:
1Pv4 CIDR:
1Pv6 CIDR:

Flow Logs Tags

vpc-56a60a2d | Test-VPC
available
172.31.0.0/16

IPv6 CIDR

Network ACL:
Tenancy:

DNS resolution:
DNS hostnames:

DHCP options set

dopt-3075f057
dopt-3075f057

acl-ce2c15b5
Default

yes

no

c &% e

1to2of 2VPCs

Route table Network

rtb-59d51020 acl-72723

rtb-c9c013b5 acl-ce2c1
_N— Q=]

You can also see a summary of the VPC which includes the IPv4 settings, the
Network Access Control List (ACL) settings, the Dynamic Host Configuration
Protocol (DHCP) options, and also the DNS settings, all of which can also be
configured later according to our needs. You can also see IPv4 CIDR blocks under
the next CIDR Blocks tab:

vpc-56a60a2d | Test-VPC

CIDR Blocks

Summary
CIDR Status Status Reason
172.31.0.0/16 associated

Flow Logs

Tags

_ N N

[195]

Security in AWS Lambda Chapter 7

6. We can also create VPC flow logs, which log traffic and data movements in and
out of the VPC. This will promote better log management, ensuring security, and
better monitoring. Currently, flow logs have not been set up:

vpc-56a60a2d | Test-VPC _ N =]

Summary CIDR Blocks Flow Logs Tags
You can create flow logs on your resources to capture IP traffic flow information for the network interfaces for your resources. Learn more about flow logs.
Create Flow Log
Flow Log ID Filter CloudWatch Logs Group IAM Role ARN Creation Time Status Inherited From

No Flow Logs found

7. To create VPC flow logs, you can just click on the Create Flow Log button at the
bottom. This will open up a flow log creation wizard where you can enter the
details for the various settings, accordingly. The creation wizard looks like this:

Create Flow Log X

Flow logs enable you to capture IP traffic flow information for the network interfaces in your resources.
Learn more about flow logs.

Resources vpc-56a60a2d (i)
Filter* | All OO i)
Role* (i)

If you have not setup IAM permissions for the
destination CloudWatch Account you will need to
do so to use Flow Logs. Set Up Permissions

ARN arn:aws:iam::080983167913:role/ (i)

Destination Log Group* (i)

*: Required [eS il Create Flow Log

[196]

Security in AWS Lambda Chapter 7

8. Once all the details have been entered, you can go ahead and click on the Create
Flow Log option at the bottom, which will create the VPC flow log with the
desired settings:

Create Flow Log x

Flow logs enable you to capture IP traffic flow information for the network interfaces in your resources.
Learn more about flow logs.

Resources vpc-56a60a2d

Filter* All

e @ @

Role* CloudTrail_CloudWatchLogs_Role

If you have not setup IAM permissions for the
destination CloudWatch Account you will need to
do so to use Flow Logs. Set Up Permissions

ARN arn:aws:iam::080983167913:role/CloudTrail_CloudW@chLogs_Role

Destination Log Group* /aws/lambda/Test-Lambda (i)

*: Required Cancel KEZLCICIQARGT]

9. Once created, you can see the newly created VPC flow log under the Flow
Logs tab, as shown here:

vpc-56a60a2d | Test-VPC _ N Q=]

Summary CIDR Blocks Flow Logs Tags
You can create flow logs on your resources to capture IP traffic flow information for the network interfaces for your resources. Learn more about flow logs .

Create Flow Log

Flow Eitorl BosucWatsh IAM Role ARN CreationTime Status herited
Log ID Logs Group From
fl- /aws/lambda/Test- March 8, 2018 at
ALL arn:aws:iam::080983167913:role/CloudTrail_CloudWatchLogs_Role8:37:24 AM Active - Q
b908cdd0 Lambda UTC+5:30

[197]

Security in AWS Lambda Chapter 7

10. Now, let's understand VPCs from AWS Lambda's point of view. Just like any
other AWS resource, Lambda functions can also be hosted inside VPCs. You can
see that setting under the Network section of your AWS Lambda function. It
looks like this:

Network

VPC Info
Select a VPC that your function will access.

No VPC v

11. From the drop-down list, you can select a VPC in which you want to host your
Lambda function:

Network

VPC Info
Select a VPC that your function will access.

No VPC v

Q
No VPC

Default vpc-030c8b65 (172.31.0.0/16)
vpc-56a60a2d (172.31.0.0/16) | Test-VPC

[198]

Security in AWS Lambda Chapter 7

12. Once you select a VPC, it will further ask you for details regarding subnets,
security groups, and so on, as shown in the following screenshot. We will learn
about them in the sections following this, so, we will configure the VPC for our
Lambda function later:

Network

VPC Info

Select a VPC that your function will access.

vpc-56a60a2d (172.31.0.0/16) | Test-VPC v

Subnets*
Select the VPC Subnets that Lambda should use to set up your VPC configuration.
Format: "subnet-id (cidr-block) | az name-tag".

v
Security Groups*
Select the VPC Security Groups that Lambda should use to set up your VPC
configuration. Format: "sg-id (sg-name) | name-tag". The table below will show the
inbound and outbound rules for the security groups you have selected.

v

@ When you enable VPC, your Lambda function will lose default internet access. If you require
external internet access for your function, ensure that your security group allows outbound
connections and that your VPC has a NAT gateway.

Inbound rules Outbound rules

Security group ID Ports Source

None - -

[199]

Security in AWS Lambda Chapter 7

Understanding subnets in VPCs

In this section, we will learn about and understand AWS subnets, which are subparts of
AWS VPCs. VPCs can be further divided into multiple subnets. These subnets can either be
public or private, depending on the security needs of your architecture. We will look at the
concept of subnets from the point of view of AWS Lambda functions.

We will perform the following steps:

1. You can go to the Subnets menu via the VPC page itself. You need to click on the
Subnets option under the Your VPCs option on the left:

VPC Dashboard Resources © Service Health
]
Filter by VPC:
Q Selecta VPG Start VPC Wizard Launch EC2 Instances Current Status Details
Note: Your Instances will launch in the US East (N. Virginia) region. @ Amazon VPC - US East (N. Virginia) ~Service is operating normally
Virtual Private Clouc - ; ’
You are using the following Amazon VPC resources in the US East (N. © Amazon EC2 - US East (N. Virginia) - Service is operating normally
Your VPCs iraini ion:
u Virginia) region: View complete service health details
Subnets 2 VPCs 1 Internet Gateway
Route Tables 0 Egress-only Internet Gateways 6 Subnets e .
2 Route Tables 2 Network ACLs Addltlonal Informatlon
Internet Gateways 0 Elastic IPs 0 VPC Peering Connections
Egress Only Internet 0 Endpoints 0 Nat Gateways VPC Documentation
Gateways 3 Security Groups 0 Running Instances All VPC Resources
0 VPN Connections 0 Virtual Private Gateways F
DHCP Options Set: orums
plions Sets 0 Customer Gateways 1 DHCP Options Set
. Report an Issue
Elastic IPs
Endpoints VPN Connections

Endpoint Services
Amazon VPC enables you to use your own isolated resources within the

NAT Gateways AWS cloud, and then connect those resources directly to your own

Peering Connections datacenter using industry-standard encrypted IPsec VPN connections.

Security Create VPN Connection
Network ACLs

Security Groups

[200]

Security in AWS Lambda

Chapter 7

2. This will take you to the subnets console, where you will see some already
existing subnets. These are the default subnets for each availability zone in your
region:

VPC Dashboard
Filter by VPC:

Q Select a VPC

/irtual Private Cloud
Your VPCs
Subnets
Route Tables
Internet Gateways

Egress Only Internet
Gateways

DHCP Options Sets
Elastic IPs
Endpoints
Endpoint Services
NAT Gateways

Peering Connections

Network ACLs

Security Groups

Create Subnet Subnet Actions v
Q Search Subnets and their proj X

Name 4 SubnetID

subnet-5702876b
subnet-7aedc333
subnet-65ccb548
subnet-0f146254
subnet-2b61df27

subnet-5df66138

Select a subnet above

State

available
available
available
available
available

available

VPC

vpc-030c8b65
vpc-030c8b65
vpc-030c8b65
vpc-030c8b65
vpc-030c8b65

vpc-030c8b65

IPv4 CIDR

172.31.32.0/20
172.31.0.0/20

172.31.48.0/120
172.31.16.0/20
172.31.80.0/20

172.31.64.0/20

Available IPv4 ~

4091
4091
4091
4091
4091
4091

& O

1 to 6 of 6 Subnets

IPvé CIDR

3. Now, to create a new subnet, you need to click on the blue Create Subnet button
on the top-left side of the console. In the creation wizard, you will be asked to
enter the following details—the name of the subnet, the VPC you want to place it
in, availability zones, and also preferred IPv4 CIDR blocks. I have placed this
subnet inside the VPC we created in the previous section:

[201]

Security in AWS Lambda

Chapter 7

Create Subnet

Use the CIDR format to specify your subnet's IP address block (e.g., 10.0.0.0/24). Note that block sizes must be between a /16
netmask and /28 netmask. Also, note that a subnet can be the same size as your VPC. An IPv6 CIDR block must be a /64 CIDR block.

Name tag
VPC
VPC CIDRs

Availability Zone
IPv4 CIDR block

Test-Subnet

vpc-56a60a2d | Test-VPC 4 €@

CIDR

172.31.0.0/16

No Preference § 0

Status

associated

i

Status Reason

4. When you click on the Yes, Create button on the bottom-right side of the creation
wizard, the new subnet is created. You can see it listed in the list of your subnets
on your console:

VPC Dashboard ST
4

Filter by VPC:
Q Search Subnets and their proj X
Q Selecta VPC
Name 4 Subnet D State VPC IPv4 CIDR

Virtual Private Cloud

subnet-5702876b available vpc-030c8b65 172.31.32.0/20
Your VPCs @ Test-Subnet subnet-949564de available vpc-56a60a2d | Test-VPC 172.31.0.0/16
Subnets subnet-7aedc333 available vpc-030c8b65 172.31.0.0/20
Route Tables subnet-85ccb548 available vpc-030c8b65 172.31.48.0/20
Internet Gateways subnet-0f146254 available vpc-030c8b65 172.31.16.0/20
Egress Only Internet subnet-2b61df27 available vpc-030c8b65 172.31.80.0/20
Gateways subnet-5df66138 available vpc-030c8b65 172.31.64.0/20
DHCP Options Sets
Elastic IPs
Endpoints
Endpoint Services
NAT Gateways subnet-949564de | Test-Subnet
Peering Connections —_—

Summary Route Table Network ACL Flow Logs Tags
Security Subnet ID: subnet-949564de | Test-Subnet Availability Zone: us-east-1b
N K ACL: IPv4 CIDR: 172.31.0.0/16 Route table: rtb-c9c013b5
etwor s
" IPv6 CIDR: Network ACL: acl-ce2c15b5

Security Groups State: available Default subnet: no

c &
1 to 7 of 7 Subnets

Available IPv4 - IPv6é CIDR

4091
65531
4091
4091
4091
4091
4091

[202]

Security in AWS Lambda Chapter 7

5. Now, we will fill in the security settings for our Lambda function with our VPC
and subnets, which we have just created. Currently, this is what the Network
setting for AWS Lambda looks like:

serverless-api Qualifiers

Network

VPC Info
Select a VPC that your function will access.

vpc-56a60a2d (172.31.0.0/16) | Test-VPC v

Subnets*
Select the VPC Subnets that Lambda should use to set up your
VPC configuration. Format: "subnet-id (cidr-block) | az name-tag".

v

Security Groups*

Select the VPC Security Groups that Lambda should use to set up
your VPC configuration. Format: "sg-id (sg-name) | name-tag". The
table below will show the inbound and outbound rules for the
security groups you have selected.

@ When you enable VPC, your Lambda function will lose default
internet access. If you require external internet access for your
function, ensure that your security group allows outbound
connections and that your VPC has a NAT gateway.

Inbound rules Outbound rules

[203]

Security in AWS Lambda

Chapter 7

6. After adding in the required settings, which are the details of the VPC, subnet
and security groups, the Network settings of our Lambda function will look like

this:

serverless-api

Network

VPC Info
Select a VPC that your function will access.

vpc-56a60a2d (172.31.0.0/16) | Test-VPC v

Subnets*
Select the VPC Subnets that Lambda should use to set up your
VPC configuration. Format: "subnet-id (cidr-block) | az name-tag".

| v

subnet-949564de (172.31.0.0/16) | us-east-1b X
Test-Subnet

A We recommend you select at least 2 subnets for Lambda to
run your functions in high availability mode.

Security Groups*

Select the VPC Security Groups that Lambda should use to set up
your VPC configuration. Format: "sg-id (sg-name) | name-tag". The
table below will show the inbound and outbound rules for the
security groups you have selected.

| v

‘ sg-9a19c5ec (default) X

Qualifiers

® When you enable VPC, your Lambda function will lose default
internet access. If you require external internet access for your

[204]

Security in AWS Lambda Chapter 7

serverless-api Qualifiers

Select the VPC Security Groups that Lambda should use to set up
your VPC configuration. Format: "sg-id (sg-name) | name-tag". The
table below will show the inbound and outbound rules for the
security groups you have selected.

v]

sg-9a19c5ec (default) X

(@ When you enable VPC, your Lambda function will lose default
internet access. If you require external internet access for your
function, ensure that your security group allows outbound
connections and that your VPC has a NAT gateway.

Inbound rules Outbound rules

1
Security group ID Ports Source
sg-9a19c5ec All sg-9a19c5ec

7. After setting up your network settings for your Lambda function, click on the
orange Save button on the top-right of your Lambda console to save those
settings to your Lambda function.

[205]

Security in AWS Lambda Chapter 7

Securing Lambda inside private subnets

Private subnets are subnets that are not open to the internet. All of their traffic is routed via
the public subnet in the same VPC using the concept of route tables. Let's understand how
to position our Lambda functions inside private subnets to add an extra layer of security:

1. Subnets created in the AWS console are not private by default. Let's evaluate and
confirm this by going through the details of the subnet that we just created:

subnet-949564de | Test-Subnet _ N =N =]
Summary Route Table Network ACL Flow Logs Tags
Subnet ID: subnet-949564de | Test-Subnet Availability Zone: us-east-1b
IPv4 CIDR: 172.31.0.0/16 Route table: rtb-c9c013b5
IPv6 CIDR: Network ACL: acl-ce2c15b5
State: available Default subnet: no
VPC: vpc-56a60a2d | Test-VPC Auto-assign Public IP: no

Available IPs: 65531 Auto-assign IPv6 address: no

2. Clicking on the Route Table tab will show us the routing settings of our subnet,
which basically tells us what kind of traffic is allowed into it:

subnet-949564de | Test-Subnet N W
Summary Route Table Network ACL Flow Logs Tags
Route Table: rtb-c9c013b5
Destination Target
172.31.0.0/16 local

[206]

Security in AWS Lambda

Chapter 7

3. In the Network ACL tab, you can see the network rules assigned for our subnet.
Here, we can see that the subnet is open to all traffic (0.0.0.0/0). So, in order to
make our subnet private, we need to fix this:

subnet-949564de | Test-Subnet

Summary

Rule #

100

Rule #

100

Route Table

Inbound:

Outbound:

Network ACL

Type
ALL Traffic

ALL Traffic

Type
ALL Traffic

ALL Traffic

Network ACL: acl-ce2c15b5

Flow Logs

Protocol
ALL ALL
ALL ALL
Protocol
ALL ALL
ALL ALL

Tags

Port Range / ICMP Type Source

0.0.0.0/0

0.0.0.0/0

Port Range / ICMP Type Destination

0.0.0.0/0

0.0.0.0/0

Allow / Deny

ALLOW

DENY

Allow / Deny

ALLOW

DENY

_N—Nu]

4. Go to the Network ACLs console by clicking on the link to the left side of your
console. You will arrive at the following page:

VPC Dashboard
Filter by VPC:

Q Select a VPC

Virtual Private Cloud

Subnets
Route Tables
Internet Gateways

Egress Only Internet
Gateways

DHCP Options Sets
Elastic IPs
Endpoints

Endpoint Services
NAT Gateways

Peering Connections

Security
Network ACLs

Security Groups

Create Network ACL
]

Q Search Network ACLs and the X

Name

acl-ce2c15b5

Summary

Inbound Rules

Network ACL ID

acl-ce2c15b5

acl-72723b14

Associated With ~ Default

1 Subnet Yes
6 Subnets Yes
Outbound Rules Subnet Associations

VPC

vpc-56a60a2d | Test-VPC

vpc-030c8b65

Tags

Allows inbound traffic. Because network ACLs are stateless, you must create inbound and outbound rules.

Rule #

100

View:

All rules
Type
ALL Traffic

ALL Traffic

Protocol PortRange Source Allow / Deny

ALL ALL

ALL ALL

0.0.0.0/0 ALLOW

0.0.0.0/0 DENY

c &% 0

1to 2 of 2 Network ACLs

_N Q=]

[207]

Security in AWS Lambda Chapter 7

5. Now, click on the blue Create Network ACL button to create a new ACL. Select
our VPC and then enter a name for the ACL in the creation wizard:

Create Network ACL x

A network ACL is an optional layer of security that acts as a firewall for controlling traffic in and out of a
subnet.

Name tag | Test-ACL (i)
VPC | vpc-56a60a2d | Test-VPC 4 €

Cancel Yes, Create

6. Now, in the inbound rules of the new ACL, add in the following rule. In the
Source section, add the IPv4 setting of any of your public subnets and click Save:

acl-cc727db7 | Test-ACL _ NN

Summary Inbound Rules Outbound Rules Subnet Associations Tags

Allows inbound traffic. Because network ACLs are stateless, you must create inbound and outbound rules.

View: | All rules v
Rule # Type Protocol Port Range Source Allow / Deny
1 SSH (22) TCP (6) 22 172.31.48.0/20 ALLOW
* ALL Traffic ALL ALL 0.0.0.0/0 DENY

[208]

Security in AWS Lambda Chapter 7

7. Now, replace the ACL of our current subnet with the new one that will make our
subnet a private subnet:

VPC Dashboard Create Subnet TNV A SINC)
Filter by VPC:
Q Search Subnets and their proj X 1to 7 of 7 Subnets
Q Selecta VPC
Name 4 SubnetID State VPC IPv4 CIDR Available IPv4 IPv6 CIDR

subnet-5702876b available vpc-030c8b65 172.31.32.0/20 4091
Your VPCs @ TestSubnet subnet-949564de available vpc-56a60a2d | Test-VPC 172.31.0.0116 65530
Subnets subnet-7aedc333 available vpc-030c8b65 172.31.0.0/20 4091
Route Tables subnet-65cch548 available vpc-030c8b65 172.31.48.0/20 4091
Internet G; bnet: | Test-Subnet Eol=
Egress Only Internet —
Gateways Summary Route Table Network ACL Flow Logs Tags
DHCP Options Sets m
Elastic IPs Network ACL: acl-cc727db7 | Test-ACL

Inbound:
Endpoints
. . Rule # Type Protocol Port Range /ICMP Type = Source Allow / Deny
Endpoint Services
NAT Gateways 1 SSH(22) TCP() 22 172.31.48.0/20 ALLOW
Peering Connections ALL Traffic ALL ALL 0.0.0.0/0 DENY
Outbound:
Rule # Type Protocol Port Range /ICMP Type Destination Allow / Deny
Network ACLs
ALL Traffic ALL ALL 0.0.0.0/0 DENY

Security Groups

Now, we have our Lambda function in a private subnet, making it more secure.

Controlling access to Lambda functions

We have gone through all the security settings needed to ensure that our Lambda functions
and our serverless architectures are secure. So, an engineer working on serverless systems
should keep the following points in mind while designing their infrastructure from a
security point of view:

e The VPC and the subnet settings can be added under the Network section of the
Lambda function.

e It is recommended that the Lambda function is placed across at least two subnets
for fault tolerance purposes. However, this is not compulsory.

e If you are placing your Lambda function inside a private subnet, you need to
ensure that the private subnet is receiving the appropriate traffic from your
public subnet(s) in that VPC. If not, then the Lambda function is essentially
locked out.

[209]

Security in AWS Lambda Chapter 7

Using STS inside Lambda for secure
session-based execution

While accessing other AWS services and components from inside your Lambda functions,
you can make use of AWS's Simple Token Service (STS) to ensure session-based access,
which will essentially add an extra layer of security. As we have already discussed, and
learned how to use, STS credentials in our code, we will skip over to the documentation
links.

The official documentation of AWS STS will help you understand how session-based access
VvorkS:https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.
html.

And this is the Boto3 Python Documentation for using STS credentials inside Python
code: nttp://boto3.readthedocs.io/en/latest/reference/services/sts.html.

Summary

In this chapter, we have learned how security works in Lambda functions in a deep-dive
mode. We have understood how VPCs and subnets work in the AWS environment. We
have learned to create a VPC and also created public and private subnets. This will give you
a better understanding of how security works from the whole of the AWS perspective.

We have also learned how to place your Lambda functions inside the VPCs and the subnets
we have created throughout this chapter. We understood how to handle and route traffic
inside our VPCs and subnets.

Finally, we also learned how to implement better security in our Python code using session-
based access to other AWS components, thereby placing security in the control of the
developer.

In the next chapter, you will learn about the Serverless Application Model (SAM) and how
to write SAM models and deploy your Lambda applications through them.

[210]

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html

Deploying a Lambda Function
with SAM

So far, we have learned about Lambda functions and how to build them. We have learned
that a Lambda function has a definite set of triggers that would trigger the function to carry
out a particular task. The task is written as a Python module and the script is what we call a
function. We have also learned about the different settings of Lambda functions, which
include its core settings and also other settings, such as security and network.

There is also another alternative to creating and deploying Lambda functions, which is the
AWS Serverless Application Model (AWS SAM). This format is based on the concept of
infrastructure as code. This concept is inspired by AWS CloudFormation, which is a form
of infrastructure as code.

We will be learning about AWS CloudFormation and using that knowledge to understand
and build AWS SAM models for creating Lambda functions. We will be covering the
following concepts in this chapter:

¢ Deploying Lambda functions

¢ Using CloudFormation for serverless services
e Deploying with SAM

¢ Understanding security in SAM

Deploying a Lambda Function with SAM Chapter 8

Introduction to SAM

In this section, we will learn about SAM, which will help us build and deploy serverless
functions:

1. As mentioned earlier, SAM is about writing infrastructure as code. So, this is
what a Lambda function would be described as in SAM:

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Resources:
< Name of function >:
Type: AWS::Serverless::Function
Properties:
Handler: < index.handler >
Runtime: < runtime >
CodeUri: < URI of the bucket >

2. In this block of code, we enter the details—the name of the function, and the URI
of the 53 bucket where our code package is hosted. In the same way that we
named the index and the handler in our Lambda settings, we need to enter those
details here, too. The index.handler is the file in which our function code is
located. The Handler is the name of the function in which our Lambda logic is
written. Also, the Runt ime is user-defined. You can select from all the available
languages that are supported by AWS Lambda. The scope of this book is limited
to the Python language, so we will stick to either of the available Python versions:

Runtime

Python 2.7 v
C# (.NET Core 1.0)

C# (.NET Core 2.0)

lambda_function Go 1x

Java 8

S Node.js 4.3

Node.js 6.10

Python 2.7

Python 3.6

[212]

Deploying a Lambda Function with SAM Chapter 8

3. We can also add environment variables, as shown here, in our Lambda function,
too. These can be very easily edited and configured just as we add, update,
and/or delete code, which is an added advantage of the infrastructure as code
style of building infrastructures:

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless—-2016-10-31
Resources:
PutFunction:
Type: AWS::Serverless::Function
Properties:
Handler: index.handler
Runtime: < runtime >
Policies: < AWSLambdaDynamoDBExecutionRole >
CodeUri: < URI of the zipped function package >
Environment:
Variables:
TABLE_NAME: !Ref Table
DeleteFunction:
Type: AWS::Serverless::Function
Properties:
Handler: index.handler
Runtime: nodejs6.10
Policies: AWSLambdaDynamoDBExecutionRole
CodeUri: s3://bucketName/codepackage.zip
Environment:
Variables:
TABLE_NAME: !Ref Table

Events:
Stream:
Type: DynamoDB
Properties:
Stream: !GetAtt DynamoDBTable.StreamArn
BatchSize: 100
StartingPosition: TRIM_HORIZON
DynamoDBTable:
Type: AWS::DynamoDB: :Table
Properties:

AttributeDefinitions:
— AttributeName: id
AttributeType: S
KeySchema:
— AttributeName: id
KeyType: HASH
ProvisionedThroughput:
ReadCapacityUnits: 5
WriteCapacityUnits: 5

[213]

Deploying a Lambda Function with SAM Chapter 8

StreamSpecification:
StreamViewType: streamview type

4. The preceding SAM code invokes two Lambda functions that point to an AWS
DynamoDB table. The entire SAM code is an application that consists of a couple
of Lambda functions. You need to enter the necessary details for making this
work. The Runt ime needs to be updated with either of the available Python
runtimes. The corresponding policy for dealing with the DynamoDB tables needs
to be updated in the Policies section. The CodeUri section needs to be updated
with the S3 URI of the code package.

5. Itis to be noted that the meta information should always be included for all SAM,
which includes the AWSTemplateFormatVersion and Transform. This would
tell CLloudFormation that the code you have written is an AWS SAM code and a
serverless application. The two lines are as follows:

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31

6. If your serverless function needs to access a single table of DynamoDB, you can
start by creating a DynamoDB table via your SAM function itself using the
SimpleTable attribute. This can be done as follows:

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Resources:
< TableName >:
Type: AWS::Serverless::SimpleTable
Properties:
PrimaryKey:
Name: id
Type: String
ProvisionedThroughput:
ReadCapacityUnits: 5
WriteCapacityUnits: 5

7. Now, we will learn how to create a Lambda function with a trigger. As we are
already using DynamoDB for the examples, we will use the same as a trigger in
this step. The SAM code for this would look as follows:

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Resources:
< Name of the function >:
Type: AWS::Serverless::Function
Properties:

[214]

Deploying a Lambda Function with SAM Chapter 8

Handler: index.handler
Runtime: < runtime >

Events:
Stream:
Type: DynamoDB
Properties:

Stream: !GetAtt DynamoDBTable.StreamArn
BatchSize: 100
StartingPosition: TRIM_HORIZON
< Name of the table >:
Type: AWS::DynamoDB: :Table
Properties:
AttributeDefinitions:
— AttributeName: id
AttributeType: S
KeySchema:
— AttributeName: id
KeyType: HASH
ProvisionedThroughput:
ReadCapacityUnits: 5
WriteCapacityUnits: 5

CloudFormation for serverless services

In this section, we will learn how CloudFormation can be used to build and deploy Lambda
functions. We will do the following:

1. We will write a CloudFormation template for a Lambda function that
periodically pings a website and gives an error if there is any failure in the
process. The CloudFormation template for this is as follows:

AWSTemplateFormatVersion: '2010-09-09'
Transform: 'AWS::Serverless—-2016-10-31"
Description: 'Performs a periodic check of the given site,
erroring out on test failure.'
Resources:
lambdacanary:
Type: 'AWS::Serverless::Function'
Properties:
Handler: lambda_function.lambda_handler
Runtime: python2.7
CodeUri:
Description: >-—
Performs a periodic check of the given site,
erroring out on test failure.

[215]

Deploying a Lambda Function with SAM Chapter 8

MemorySize: 128
Timeout: 10
Events:
Schedulel:
Type: Schedule
Properties:
Schedule: rate (1l minute)
Environment:
Variables:
site: 'https://www.google.com/'
expected: Search site.

2. There is a lot of syntax in this CloudFormation snippet. We will now try to
understand it in a bit more detail:

1. In the first three lines that contain the meta details of the Lambda
function, we have the following line—Transform:
"AWS::Serverless-2016-10-31". This line is used to define the
resources that a user will be using/accessing, through a
CloudFormation template. As we are using a Lambda function, we
have specified it as Serverless.

2. We have also defined the memory size that our function will be using.
It is similar to how we learned to view and change the memory settings
in the Lambda's console.

3. Timeout is the amount of time the Lambda function can keep retrying
before considering the attempt as a failure.

You can also see that we have added environment variables to our Lambda function that
will be stored in the Lambda container and used when needed by the system.

Deploying with SAM

In this section, we will learn how to deploy the SAM applications. We have already learned
what SAM applications and code look like, so we will learn how to deploy them via AWS
CloudFormation:

1. Firstly, let's set up our local environment for deployment purposes, and then start
by installing awscli from pip:

[216]

Deploying a Lambda Function with SAM Chapter 8

2. Next, you will need to configure your AWS environment using your credentials:

Desktop

3. You will need to enter the following details to make sure your AWS environment
is successfully configured:
e Your AWS Access Key

* Your AWS Secret Key
¢ The default region in which you want to operate
¢ The default output format in which you want your data

4. Now, let's try to deploy a simple Hello World Lambda application via SAM. We
will have two code files for this. One is the Python file and the other is the
template yam1 file.

[217]

Deploying a Lambda Function with SAM Chapter 8

5. We will use the default Hello World example for Python, as we are trying to
understand how SAM deployments work instead of stressing too much about the
code for now. The Python script will be as follows:

import json
print ('Loading function')
def lambda_handler (event, context):

#print ("Received event: " + json.dumps (event, indent=2))
print ("valuel = " + event|['keyl'])
print ("value2 = " + event|['key2'])
print ("value3 = " + event['key3'])

return event['keyl'] # Echo back the first key value
#raise Exception('Something went wrong')

6. We will use a basic template yam1 file for the SAM function too, whose only job is
to define its meta information and to run the Python script that is mentioned
previously. The template yam1 file will look like this:

AWSTemplateFormatVersion: '2010-09-09'
Transform: 'AWS::Serverless—-2016-10-31"
Description: A starter AWS Lambda function.

Resources:
helloworldpython3:
Type: 'AWS::Serverless::Function'
Properties:

Handler: lambda_function.lambda_handler
Runtime: python3.6

CodeUri:

Description: A starter AWS Lambda function.
MemorySize: 128

Timeout: 3

7. Now, we will package the SAM template we just created, using the command
line. The instructions for packaging the code are as follows:

aws cloudformation package —--template-file template.yaml —--
output-template-file output.yaml —--s3-bucket receiver-bucket

[218]

Deploying a Lambda Function with SAM Chapter 8

You get the following output:

aws cloudformation package —-template-file template.yaml —-output—template-file output.yaml --s3-bucket receiver-bucket

8. This will create an output yaml file that needs to be deployed, as mentioned in
the preceding trace. The output . yaml file looks like this:

AWSTemplateFormatVersion: '2010-09-09'
Description: A starter AWS Lambda function.
Resources:
helloworldpython3:
Properties:
CodeUri: s3://receiver-—
bucket/22067de83ab3b7al2a153fbd0517d6ct
Description: A starter AWS Lambda function.
Handler: lambda_function.lambda_handler
MemorySize: 128
Runtime: python3.6
Timeout: 3
Type: AWS::Serverless::Function
Transform: AWS::Serverless-2016-10-31

9. Now, as we have packaged the SAM template, we will now deploy it. We will
use the instructions shown in the trace when we did the packaging for the
deployment process. The instructions for deployment are as follows:

aws cloudformation deploy —-template-file
/Users/<path>/SAM/output .yaml --stack-name 'TestSAM' —--
capabilities CAPABILITY_ IAM

This will give you the following output:

[219]

Deploying a Lambda Function with SAM

Chapter 8

10. We can head over to the CloudFormation console to look at the template we just
deployed. The deployed template will look something like this:

@ CloudFormation

Filter: Active v

Create Stack | ~ HGIIERg

Status reason:

Termination protection:

v

Stacks

Design template

Stack Name Created Time Status Description
TestSAM 2018-04-01 15:18:33 UTC+0550 CREATE_COMPLETE A starter AWS Lambda function.
Overview Outputs Resources Events Template Parameters Tags StackPolicy Change Sets Rollback Triggers _N =]
Stack name: TestSAM
Stack ID: arn:aws:cloudformation:us-east- stack/TestSAM/d7197520-3591-11e8-b6b7-500c3d441629
Status: CREATE_COMPLETE

Disabled

c | =

Showing 1 stack

1AM role:

11. In the Template tab shown here, we can see both the original template and the
processed template. The original template can be seen by selecting the first radio
button:

® CloudFormation v

Create Stack | ~ [EIGICIER

Filter: Active v

Stacks

Design template

c #

Showing 1 stack

Stack Name Created Time Status Description
TestSAM 2018-04-01 15:18:33 UTC+0550 CREATE_COMPLETE A starter AWS Lambda function.
Overview Outputs Resources Events Template Parameters Tags Stack Policy Change Sets Rollback Triggers _N -} =}

© View original template View processed template View/Edit template in Designer

AWSTemplateFormatVersion: '2010-09-09'
Description: A starter AWS Lambda function.
Resources:
helloworldpython3:
Properties:
CodeUri: s3://receiver-bucket/22067de83ab3b7a12a153£bd0517d6cE
Description: A starter AWS Lambda function.
Handler: lambda_function.lambda_handler
MemorySize: 128
Runtime: python3.6
Timeout: 3

Type: AWS::Serverless::Function

[220]

Deploying a Lambda Function with SAM Chapter 8

12. The processed template can be seen by selecting the second radio button under
the Template tab at the bottom:

@ CloudFormation v Stacks

reate Stack Actions v Design template c o

Filter: Active v Showing 1 stack
Stack Name Created Time Status Description

TestSAM 2018-04-01 15:18:33 UTC+0550 CREATE_COMPLETE A starter AWS Lambda function.

Overview Outputs Resources Events Template Parameters Tags StackPolicy Change Sets Rollback Triggers N =N =]

View original template @) View processed template View/Edit template in Designer

{"AWSTemplateFormatVersion":"2010-09-09", "Description”:"A starter AWS Lambda function.',"Resources”:{"helloworldpython3Role ":"AWS::IAM::Role”, "Properties”:

{"ManagedPolicyArns” :["arn:aws:iam: 1aws:policy/servi bdaBasi P50 i ":{"Version":"2012-10-17", "Statement" [{"Action":

t

"sts:AssumeRole"], "Effect”:

110w"

1":{"Service" : ["lambd: "1}}1}}}, "hel thon3": {"Type"

ambda: :Function", "Properties”:{"Code":

"s3Bucket" : "receiver-bucket", "S3Key" :

"22067de83ab3b7a12a153£bd0517d6cE" }, "Description”: "A starter AWS Lambda function.”,"Tags:

[{"Value":"SAN", "Key":

ambda:createdBy"}], "MemorySiz 8, "Handler": "lambda_function.lambda_handler","Role":{"Fn::GetAtt":

:"python3.6"}}}}

["helloworldpython3Rols

,"ATn"]}, "Timeout":3, "Runtime

13. If we head over to the Lambda console, we will see the newly created Lambda
function via SAM with the corresponding name given:

(6]
AWS Lambda X Lambda Functions
Dashboard Functions (2) C [create function |
Functions
Q, Filter by tags and attributes or search by keyword @ 1 [}
Code Last
Functi D ipti Runti
unction name escription untime size Modified
TestSAM-helloworldpython3- A starter AWS Lambda 19 minutes
24 . Python 3.6 670 bytes
1STOROS1AR98Z function. ago

A starter AWS Lambda

serverless-api i
function.

Python 2.7 374 bytes 21 days ago

[221]

Deploying a Lambda Function with SAM Chapter 8

14. Clicking on the Functions will give us more information about it. It also mentions
the SAM template and the CloudFormation template from which it was created:

(6]

Lambda Functions TestSAM-helloworldpython3-1STOROS1AR98Z

ARN - arn:aws:lambda:us-east-1:080983167913:function:TestSAM-helloworldpython3-1STOROS1AR98Z

TestSAM_he[[owor[dpytho.._[Throttle H Qualifiers v H Actions ¥ Select a test event v

@® This function belongs to the CloudFormation stack TestSAM. Visit the CloudFormation console to manage this stack. X
Configuration Monitoring

v Designer

f\dkd triggers)

e list below |||,~| TestSAM-helloworldpyth
o on3-1STOROS1AR98Z

API Gateway
Add triggers from the list on the left . Amazon CloudWwatch Logs
AWS loT

Alexa Skills Kit Resources the function's role has access to will be

shown here
Alexa Smart Home

CloudFront

15. Let's create basic tests for the Lambda function. The test creation console can be
opened by clicking on the Test button:

Configure test event
A function can have up to 10 test events. The events are persisted so you can switch to another computer or web browser
and test your function with the same events.

O Create new test event

Event template

Hello World v
Event name
I TestEvent

1-{

2 "key3": "value3",

3 "key2": "value2",

4 "keyl": "valuel"

5%

[222]

Deploying a Lambda Function with SAM Chapter 8

16. Now, once the tests have been created, you can again click on the Test button.
This will run the testing with the updated test cases. The logs from a successful
run will look like this:

TestSAM-helloworldpytho... [trote || qualifies v || actions v TestEvent v 6]

© Execution result: succeeded (logs) X

|v Details l

The area below shows the result returned by your function execution.

"valuel”
Summary
Code SHA-256 426252TDAGRIXIWMNIZ+FipzTXrn48J5hi8d3dIglaY= Request ID a8bd59d5-3599-11e8-8¢7c-41b2f35409ad
Duration 4.85ms Billed duration 100 ms
Resources configured 128 MB Max memory used 21 MB
Log output

The area below shows the logging calls in your code. These correspond to a single row within the CloudWatch log group corresponding to this Lambda function.
Click here to view the CloudWatch log group.

START RequestId: a8bd59d5-3599-11e8-8c7c-41b2f354@9ad Version: $LATEST

valuel = valuel

value2 = value2

value3 = value3

END RequestId: a8bd59d5-3599-11e8-8c7c-41b2f354@9ad

REPORT RequestId: a8bd59dS-3599-11e8-8c7c-41b2f35409ad Duration: 4.85 ms Billed Duration: 100 ms Memory Size: 128 MB Max
Memory Used: 21 M8

17. Now, let's go through each component of the Lambda function properly. The
Configuration shows the triggers and the logging settings of our Lambda
function. We are logging into the CloudWatch service of AWS:

Configuration Monitoring

v Designer

Add triggers ‘p
Click on a trigger from the list below |||n TestSAM-helloworldpyth
to add it to your function on3-1STOROS1AR98Z

API Gateway
Add triggers from the list on the left ‘ Amazon CloudWatch Logs
AWS loT ~

Alexa Skills Kit Resources the function's role has access to will be

shown here
Alexa Smart Home

CloudFront

[223]

Deploying a Lambda Function with SAM Chapter 8

18. We can also see the invocation metrics in the Monitoring option in the Lambda
console. We can see exactly one Lambda invocation:

TestSAM-he[[owor[dpytho___[Throttle | [Qualifiers v | [Actions v | | Testvent v ®

Configuration Monitoring

CloudWatch metrics at a glance (aggregated per hour)

Invocations

Last 24 hours ¥ Duration Last 24 hours ¥
Jump to Metrics [4 Jump to Logs [F Jump to Metrics [4 Jump to Logs [
1 5
0.8 4
06 3
0.4 2
0.2 1
) 0
18:00 01 Apr 06:00 12:00 18:00 01 Apr 06:00 12:00
Count

Max Milliseconds
Avg Milliseconds

19. You can see the code files in the Function code section. You can see the folder
structure in the left-hand corner of the interactive code editor that contains both
the template.yaml file and the function code:

1]

TestSAM-he[[owor[dpytho___[Throttle H Qualifiers ¥ H Actions ¥ ‘ TestEvent v ®

Function code info

Code entry type Runtime Handler Info

Edit code inline v Python 3.6 v lambda_function.lambda_handler

File Edit Find View Goto Tools Window

v B TestSAM-helloworldpythons- = lambda_function.py x
4 1ambda_function.py
R template.yami import json

Environment

print('Loading function')

def lambda_handler(event, context):

#print("Re v

t ;
print("valuel + event['keyl
print("value2 + event['key2'])
print("value3 + event['key3'])
return event['keyl'] # Ec

#raise Exception('Somethin,

[224]

Deploying a Lambda Function with SAM Chapter 8

20. And further below, you can see the pre-existing environment variable named
lambda:createdBy, and also the timeout setting we mentioned in our template.

Understanding security in SAM

So far, we have learned how to write, build, package, and deploy Lambda functions using
the SAM. We will now understand how security works inside them:

1. You can scroll to the bottom of the Lambda console to see the network and
security settings, where the VPC and the subnet details are mentioned:

TestSAM-he[[owor[dpytho.'_[Throttle H Qualifiers v H Actions ¥ ‘ TestEvent v ®

Tags

lambda:createdBy

Execution role Basic settings

Description

hat r
Learn more
A starter AWS Lambda function.

Choose an existing role
Memory (MB) Info
! ca

Existing role

TestSAM-helloworldpython3Role-1CB7567HSYP... ¥ .
Timeout Info
0 min 3 sec

[225]

Deploying a Lambda Function with SAM Chapter 8

2. Now, we will add in the network settings, which include the security groups and
the subnet IDs:

AWSTemplateFormatVersion: '2010-09-09'
Transform: 'AWS::Serverless—-2016-10-31"
Description: A starter AWS Lambda function.
Resources:
helloworldpython3:
Type: 'AWS::Serverless::Function'
Properties:
Handler: lambda_function.lambda_handler
Runtime: python3.6
CodeUri:
Description: A starter AWS Lambda function.
MemorySize: 128
Timeout: 3
VpcConfig:
SecurityGrouplds:
- sg—9al9cbec
SubnetIds:
— subnet-949564de

3. Now, package and deploy the newly updated SAM template like we did in the
previous section:

4. Now you will see the corresponding network and security settings, once you
have packaged and deployed the CloudFormation template after the
corresponding edits. The Network section looks as follows:

[226]

Deploying a Lambda Function with SAM Chapter 8

= TeStSAM—helloworldpytho .. I Throttle ‘ I Qualifiers v ‘ I Actions ¥ TestEvent v 6]
Network Debugging and error handling
VPC Info DLQ Resource Info
Select a VPC that your function will access. Choose the AWS service to send event payload to after exceeding
maximum retries.
vpc-56a60a2d (172.31.0.0/16) | Test-VPC v

None v
Subnets*
Select the VPC Subnets that Lambda should use to set up your Enable active tracing Info

VPC configuration. Format: "subnet-id (cidr-block) | az name-tag".
I v

subnet-949564de (172.31.0.0/16) | us-east-1b X ‘

Test-Subnet

A, We recommend you select at least 2 subnets for Lambda to
run your functions in high availability mode.

Security Groups*

Select the VPC Security Groups that Lambda should use to set up
your VPC configuration. Format: “sg-id (sg-name) | name-tag". The
table below will show the inbound and outbound rules for the
security groups you have selected

s5g-9a19c5ec (default) X

@ When you enable VPC, your Lambda function will lose default
internet access. If you reguire external internet access for your

5. You can also see the inbound rules of your corresponding security groups that
are linked with the VPC in your Network settings:

El ©

Throttle H Qualifiers v H Actions v ‘ TestEvent v

TestSAM-helloworldpytho...

@ When you enable VPC, your Lambda function will lose default
internet access. If you require external internet access for your
function, ensure that your security group allows outbound
connections and that your VPC has a NAT gateway.

Inbound rules Outbound rules
1

Security group ID Ports Source

sg-9a19c5ec All sg-9a19c5ec
Concurrency Auditing and compliance
Unreserved account concurrency 1000 This function's invocations can be logged by CloudTrail for operational and risk

auditing, governance, and compliance. Visit the CloudTrail console to get

© Use unreserved account concurrency startedg g P g

Reserve concurrency

Feedback (@ English (US) Amazon In d Privacy Policy ~ Terms of Use

[227]

Deploying a Lambda Function with SAM

Chapter 8

6. You can also see the completed CloudFormation template in your console with
the updated network and security settings, which means that deployment has

been successful:

Create Stack o Actions ¥

TestSAMSec

TestSAM 2018-04-01 15:18:33 UTC+0550
Overview Outputs Resources Events Template Parameters
Filter by: Status v

2018-04-02 Status Type
» 00:45:43 UTC+0550 CREATE_COMPLETE AWS::CloudFormation::

>

>

® CloudFormation v Stacks

Design template
Filter: Active v

Stack Name Created Time

2018-04-02 00:45:14 UTC+0550

00:45:42 UTC+0550
00:45:42 UTC+0550
00:45:41 UTC+0550

CREATE_COMPLETE

00:45:39 UTC+0550 CREATE_COMPLETE AWS::IAM::Role
00:45:29 UTC+0550 AWS::IAM::Role
00:45:29 UTC+0550 AWS::IAM::Role

@ Feedback (@ English (US)

Tags

Status

CREATE_COMPLETE

CREATE_COMPLETE

:Stack

AWS::Lambda::Function
AWS::Lambda::Function
AWS::Lambda::Function

Stack Policy

(SN -)
Showing 2 stacks

Description
A starter AWS Lambda function.

A starter AWS Lambda function.

Change Sets Rollback Triggers _N Q=]
Logical ID Status Reason
TestSAMSec

helloworldpython3
helloworldpython3
helloworldpython3
helloworldpython3Role
helloworldpython3Role
helloworldpython3Role

Resource creation Initiated

Resource creation Initiated

© 2008 - 2018, Amazon Internet S¢

Private Ltd. or its affiliates. All rights reserved. Privacy Policy ~ Terms of Use

7. You can also see the original template under the Templates option in the bottom

corner of the console:

[228]

Deploying a Lambda Function with SAM Chapter 8

@ CloudFormation v Stacks

Create Stack Actions v Design template (e &

Filter: Active v Showing 2 stacks
Stack Name Created Time Status Description
TestSAMSec 2018-04-02 00:45:14 UTC+0550 CREATE_COMPLETE A starter AWS Lambda function.
TestSAM 2018-04-01 15:18:33 UTC+0550 CREATE_COMPLETE A starter AWS Lambda function.
Overview Outputs Resources Events Template Parameters Tags Stack Policy Change Sets Rollback Triggers |_ B =R =]

AWS1EmpLATErOrmATVersion: ZUiu-uy-uy
Description: A starter AWS Lambda function.
Resources:
helloworldpython3:
Properties:

CodeUri: s3:// iver-bucket/£94a 7527

Description: A starter AWS Lambda function.
Handler: lambda_function.lambda_handler
MemorySize: 128
Policies: AdministratorAccess
Runtime: python3.6
Timeout: 3
VpcConfig:
SecurityGroupIds:
- sg-9al9csec
SubnetIds:

- anbnet-049564de

@ Feedback (@ English Privacy Policy ~ Terms of Use

8. The processed template can be found by selecting the View processed template
option beside the original template option at the bottom of the console:

@ CloudFormation v Stacks

Create Stack Actions ¥ Design template () o

Filter: Active v Showing 2 stacks
Stack Name Created Time Status Description
TestSAMSec 2018-04-02 00:45:14 UTC+0550 CREATE_COMPLETE A starter AWS Lambda function.
TestSAM 2018-04-01 15:18:33 UTC+0550 CREATE_COMPLETE A starter AWS Lambda function.
Overview Outputs Resources Events Template Parameters Tags Stack Policy Change Sets Rollback Triggers |_ B =R =]
View original template € View processed template View/Edit template in Designer

{"AWSTemplateFormatVersion":"2010-09-09", "Description”:"A starter AWS Lambda function.",".

“"helloworldpython3Role": {"Type": "AWS: : IAM: :Role", "Properties

{"ManagedPolicyArns”:["arn:aw

aws :policy/service-role/AWSLambdaBasicExecutionRole" , "arn:aws:iam: :aws:policy/Admini

1,"A RolePoli
10-17", "Statement": [{"Action”

sts:AssumeRole"], "Effect”: "Allow”, "Principal”:{"Service":["lambda.amazonaws.com"]}}]}}}, "helloworldpython3”:

{"Type":"AWS: :Lambda: :Function" , "Properties”:{"Code" : { "S3Bucket" : "receiver-bucket", "S3Key" : "£94a786£2b5b4a8d25bbf5da5a6c7527" } , "Description” : "A starter AWS Lambda
[
[{"Value":"SAN", "Rey": "lambda:createdBy"}], "MemorySize":128, "Handler" : "lambda_function.lambda_handler”,"Role":{"Fn::GetAtt":

"SubnetIds”

function.", "VpcConfig”:{ ["subnet-949564de”], "SecurityGroupIds”:["sg-9aldcSec”]}, "Tags":

["helloworldpython3Role", "Arn"]}, "Timeout":3, "Runtime": "python3.6"}}}}

[229]

Deploying a Lambda Function with SAM Chapter 8

Summary

In this chapter, we learned how to deploy Lambda functions as infrastructure as code via
SAM, which is a new way of writing and deploying Lambda functions. This makes it easier
to integrate with other IaaS services, such as CloudFormation. We also learned about the
AWS CloudFormation service, which is the service that allows and facilitates infrastructure
as code. We also learned how security works inside SAM code and how to configure VPC
and subnet settings.

In the next chapter, you will be introduced to Microsoft Azure functions, along with
configuring and understanding the components of the tool.

[230]

Introduction to Microsoft Azure
Functions

So far, we have learned how to build serverless functions and serverless architectures using
Python in the AWS environment. We have also learned about the settings and environment
of the AWS Lambda tool in great detail. We shall now learn and explore its counterpart
from Microsoft Azure Functions.

In this chapter, you will learn how Microsoft Azure Functions work, what the Microsoft
Azure Functions console looks like, and how to go about understanding the settings in the
console. This chapter is divided into the following sections:

e Introduction to Microsoft Azure Functions
¢ Creating your first Azure Function

Understanding triggers

Understanding logging and monitoring

Best practices for writing Microsoft Azure Functions

Introduction to Microsoft Azure Functions

Chapter 9

Introduction to Microsoft Azure Functions

Microsoft Azure Functions is the Azure counterpart of AWS's Lambda service. In this
section, we will learn how to locate and navigate the Microsoft Azure Functions console. So,

let's start by performing the following steps:

1. You can locate the Azure Functions app by navigating to the All services tab on
the left menu and typing out the function filter. You will now notice the Microsoft
Azure Function's service under the name, Function Apps:

—} Create a resource

All services

% FAVORITES

I= Dashboard

5 Al resources

N#/ Resource groups
‘ App Services

% Function Apps
= SQL databases
& Azure Cosmos DB

B virtual machines

’ Load balancers

= Storage accounts
*2 Virtual networks

’ Azure Active Directory

All services | functions

App Services
Keywords: Functions

& Function Apps D

Keywords: Functions

[232]

Introduction to Microsoft Azure Functions Chapter 9

2. Once you click on that, you will be re-directed to the Function Apps console. For
now, it will be empty if you haven't created any functions. The console will look
something like this:

Home > Function Apps

- Create a resource Function Apps X
All services O Search
All subscriptions Function Apps
% FAVORITES
== Function Apps o Location: All locat Resource Al N
= g locations . resource groups 0 grouping
B Dashboard ~ Group:
. NAME v SUBSCRIPTION ID v RESOURCE GROUP v LOCATION v
252 All resources
N/ Resource groups
. App Services
%> Function Apps No function apps to display
- Azure Functions are an event-based serverless
st SQL databases
compute experience to accelerate your development.
& Azure Cosmos DB Scale based on demand and pay only for the

resources you consume.
! Virtual machines

Learn more about azure functions 2
0 Load balancers
= Storage accounts

Virtual networks

. Azure Active Directory

[233]

Introduction to Microsoft Azure Functions Chapter 9

3. Now, let's start with creating an Azure Function. To do so, we need to click on
the Create a resource option on the left menu, then click on the Compute option
from that list, and then select the Function App option from the subsequent list
of options:

Microsoft Azure

Home > New

| Create a resource New

All services

0

% FAVORITES
Azure Marketplace See all

Dashboard
Get started

.
All resources
Recently created

Resource groups Compute
. Networking

App Services
Storage

Function Apps .
Web + Mobile

-

SQL databases Containers

Databases

Azure Cosmos DB

Data + Analytics

8% Virtual machines

Al + Cognitive Services

Load balancers Internet of Things

B storage accounts Enterprise Integration

Security + Identity

Virtual networks

Microsoft Azure Functions come under the list of Compute resources on the dashboard. In
the following sections, we will learn how to create Microsoft Azure Functions and also
understand the different kinds of triggers and how they work.

[234]

Introduction to Microsoft Azure Functions Chapter 9

Creating your first Azure Function

In this section, we will learn how to create and deploy an Azure Function. We will go
through the process step by step in order to understand how each section of an Azure
function works:

1. When you click on the Functions App in the menu, you will be re-directed to the
Function App creation wizard, as shown in the following screenshot:

Home > New > Function App

— Create a resource Function App a0 X

Create
All services

* App name
FAVORITES

.azurewebsites.net
Dashboard * Subscription
Free Trial v

All resources
* Resource Group @

Resource groups @ Create new O Use existing
App Services
* 05 IVLEETM Linux (Preview)
Function Apps
* Hosting Plan @
SQL databases Consumption Plan v
* Location
¥ Azure Cosmos DB
Central US v
Virtual machines .
Storage @

Create new Use existing
Load balancers @ O

9fcc
Storage accounts

Pin to dashboard

m Automation options

Virtual networks

‘ Azure Active Directory

[235]

Introduction to Microsoft Azure Functions Chapter 9

2. Add the required information in the wizard accordingly. Choose Linux (Preview)
as the OS. Then, click on the blue Create button at the bottom of the wizard:

Home > New > Function App

— Create a resource Function App a X
Create
All services
* App name
% FAVORITES packt-test
.azurewebsites.net
Dashboard * Subscription
Free Trial v

All resources
* Resource Group @

Resource groups @ Create new O Use existing
packt-test
App Services
* 0s Linux (Preview)
Function Apps
* App Service plan/Location S
SQL databases ServicePlan97e39185-afa5(West ...
& Azure Cosmos DB N
Storage @
Create new Use existin
! Virtual machines @ O g
packttestabb8
’ Load balancers
. Application Insights @ On Off
= Storage accounts

Pin to dashboard

Automation options

Virtual networks

‘ Azure Active Directory

[236]

Introduction to Microsoft Azure Functions Chapter 9

3. Clicking on the Automation options at the bottom will open up a validation
screen for automating Function deployments. This is not needed for this chapter.
This will simply validate your Azure Function:

Home > New > Function App > Template

Template

! Download H Add to library |1| Deploy
Automate deploying resources with Azure Resource Manager templates in a single, coordinated operation. Define resources and configurable input parameters and deploy &
with script or code. Learn more about template deployment.
Template Parameters CLI PowerShell .NET Ruby
» " Parameters (10) 14
2 "parameters":
Variables (0) P " " {
- 3 name": {
¥ N Resources (4) 4 "type": "string"
[parameters(‘name’)] (MicrosoftW... 5 h
. 6 "storageName": {
' [parameters(‘hostingPlanName")] (... " - —
7 type": "string
= [parameters('storageName")] (Micr... 8 },
? [parameters('name")] (microsoft.in... 9 "hostingPlanName": {
10 "type": "string"
11 +
12 "hostingEnvironment": {
13 "type": "string"
14 h
15 "location": {
16 "type": "string"
17 },
18 "sku": {
19 "type": "string"
20 h

4. Once you click Create, you will see the deployment in progress under
the Notifications menu:

Notifications

Dismiss: Informational Completed All

=nm Deployment in progress... Running

Deployment to resource group 'packt-test' is in progress.

[237]

Introduction to Microsoft Azure Functions Chapter 9

5. Once it has been successfully created, it will be reflected in your notifications list
with a green-colored notification:

Notifications

Dismiss: Informational Completed All

o Deployment succeeded 08:29

Deployment 'Microsoft.FunctionApp15e1cf54-adia’ to
resource group 'packt-test’ was successful.

6. Clicking on Go to resource will take you to the newly created Azure Function.
The function console will look like this:

Home > packt-test

‘ packt-test
App Service
pel « [Browse W Stop ‘(;. Swap C) Restart [Delete i Get publish profile CQ Reset publish profile
Resource group (change) URL
® o . packt-test https://packt-test.azurewebsites.net
verview
Status App Service plan/pricing tier
ﬁ Activity | Running ServicePlan97e39185-afa5 (Standard: 1 Small)
ctivity lo
Ve Location FTP/deployment username

West Europe No FTP/deployment user set

[/
waa Access control (IAM)
o FTP hostname

ftp://waws-prod-am2-085.ftp.azurewebsites.windows.net
FTPS hostname
ftps://waws-prod-am2-085.ftp.azurewebsites.windows.net

Subscription (change)
Free Trial
' Tags
9 Subscription ID
. bb1654b1-7a6c-4d89-81c8-301cf70d53a1
¥ Diagnose and solve problems

»

DEPLOYMENT
App Service Advisor

Quickstart
| Deployment credentials
Deployment slots
4% Deployment options

Continuous Delivery (Preview)

X Diagnose and solve 9

problems E

Our self-service diagnostic and
troubleshooting experience helps
you identify and resolve issues
with your web app.

Application Insights @
R

Application Insights helps you
detect and diagnose quality
issues in your apps, and helps
you understand what your users
actually do with it.

App Service Advisor provides
insights for improving app
experience on the App Service
platform. Recommendations are
sorted by freshness, priority and
impact to your app.

Http 5xx)(Data In *
SETTINGS 100 e
= icati i 1.2kB
== Application settings 80
1kB
£ 0.8kB

[238]

Introduction to Microsoft Azure Functions Chapter 9

We have successfully created an Azure Function. We will cover in more detail triggers,
monitoring, and security in the forthcoming sections of this chapter.

Understanding triggers

In this section, we will look at how triggers work in Azures Function applications. We will
also learn about the different types of triggers and their purpose. Perform the following
steps:

1. In the left menu, click on the (+) symbol beside the Functions option for adding,
removing, or editing a trigger:

Microsoft Azure

Home > packt-test

—} Create a resource packt-test

Function Apps

All services O "packt-test"

All subscriptions
X FAVORITES P

== Function Apps
Dashboard

w (> packt-test

All resources

w = Functions B
Resource groups ——
» =— Proxies

& App Services } == Slots (preview)

% Function Apps

e SQL databases

' Azure Cosmos DB

[239]

Introduction to Microsoft Azure Functions Chapter 9

2. You will be taken to the function creation console, which looks like this:

Function Apps
L "Test-Packt" x
Pay-As-You-Go < >
= Function Apps

Get started quickly with a premade function

w <> Test-Packt

v 2= Functions + 1. Choose a scenario

» 5= Proxies p /) @ @

HeP i
b 1= Slots (preview) Webhook + API Timer Data processing

2. Choose a language
© Csharp JavaScript FSharp Java

For PowerShell, Python, and Batch, create your own custom function.

Create this function

or,

Get started on your own

[240]

Introduction to Microsoft Azure Functions Chapter 9

3. Azure does not have a lot of support for Python. So, in this console, let's choose a
custom function of our own. Click on Custom function under the Get Started on
your own option at the bottom:

Test-Packt
Function Apps

R "Test-packt” 3 Get started quickly with a premade function

Pay-As-You-Go
1. Choose a scenario

2= Function Apps

w ¢ Test-Packt < / > @ @

v 2= Functions + Webhook + API Timer Data processing

b == Proxies
2. Choose a language

» == Slots (preview,
- ®) © CSharp JavaScript FSharp Java

For PowerShell, Python, and Batch, create your own custom function.

Create this function

or,

Get started on your own

Custom function

Start from source control

[241]

Introduction to Microsoft Azure Functions Chapter 9

4. In the function creation wizard, enable the Experimental Language option in the
right menu. Now, you will be able to see the Python option in the available
languages:

Home > All resources > Test-Packt

Test-Packt

Function Apps

F#
A "Test-Packt" x '
Choose a template below orgo to th Javascript
Pay-As-You-Go PHP
Language: Akl Scenario: Al Experimental Language
i= i u rio:)
=— Function Apps L Search by trigger, language . oo e

w <> Test-Packt

— n
w == Functions e

HTTP trigger

. A function that will be run whenever it receives an HTTP
» 2= Slots (preview) request, responding based on data in the body or query
string

» = Proxies

Batch C# F# JavaScript PowerShell
Python TypeScript

Queue trigger

A function that will be run whenever a message is added to
a specified Azure Storage queue

[242]

Introduction to Microsoft Azure Functions Chapter 9

5. There are two triggers that are available for the Python language. One is the
HTTP trigger and the other is the Queue trigger, as seen in the following
screenshot:

Home > All resources > Test-Packt

Test-Packt

Function Apps

O "Test-Packt" x

Pay-As-You-Go HTTP trigger

== Function Apps
A function that will be run whenever it receives an HTTP
v < Test-Packt request, responding based on data in the body or query
string

w == Functions +
» == Proxies .

" Batch C# F# JavaScript PowerShell
> EE Slots (preview) Python TypeScript

Queue trigger

A function that will be run whenever a message is added to
a specified Azure Storage queue

Bash Batch C# F# JavaScript PHP
PowerShell Python TypeScript

[243]

Introduction to Microsoft Azure Functions Chapter 9

6. The HTTP trigger will trigger the function whenever it receives an HTTP request.
When you click on it, you will notice options for adding different HTTP-related
settings, such as authorization and name:

Home > All resources > Test-Packt

Test-Packt

Function Apps

O "Test-Packt" HTTP trigger

Pay-As-You-Go

New Function

= Function Apps

Language:
w (> Test-Packt
Python
w == Functions
— + Name:
» = Proxies HttpTriggerPython31
» 2= Slots (preview)
HTTP trigger

Authorization level @

Function

This language is experimental
and does not yet have full
support. If you run into issues,
please file a bug on our GitHub
repository.

[244]

Introduction to Microsoft Azure Functions Chapter 9

7. The next trigger is the Queue trigger. This will trigger the function whenever a
message is added to the queue. We have done the same in AWS Lambda in one
of our previous chapters too:

Home > All resources > Test-Packt

Test-Packt

Function Apps

O "Test-Packt" x Queue trigger

Pay-As-You-Go

New Function

= Function Apps

w <> Test-Packt Language:

—) Python
w =— Functions -+
— Name:
b =— Proxies
QueueTriggerPython1

» EE Slots (preview)

Azure Queue Storage
trigger

Queue name @

samples-python

Storage account show
connection @ new value

AzureWebJobsDashboard

This language is experimental
and does not yet have full
support. If you run into issues,
please file a bug on our GitHub
repository.

[245]

Introduction to Microsoft Azure Functions Chapter 9

Understanding logging and monitoring in
Azures Functions

In this section, we will learn and understand the monitoring and logging mechanisms
available to the user in Microsoft Azure Functions. Perform the following steps:

1. By clicking on the Monitor option under the function, we can access the
monitoring suite of that particular Azure Function:

Home > All resources > Test-Packt - HttpTriggerPython31 > Test-Packt

All resources « # X Test-Packt - HttpTriggerPython31

jrajrohit33gmail (Default Directory) Function Apps

== Add EE Edit columns *+* More O "Test-Packt" x
Q App Insights is enabled for your function. Open Application Insights
Pay-As-You-Go
== Function Apps
NAME Success count since Apr 1st Error
p— <> Test-Packt
&, CentralUSPlan see v 1 0

@ Test-Packt w 2= Functions

<{) Test-Packt oo w f HttpTriggerPython31
 testpacktbbf % Integrate Invocation log < Refresh live event stream
£ Manage Function status Detils: L::: (duration)
Q, Monitor HttpTriggerPython31 (Method: > aday ago (1,780 ms)

POST, Uri: ...)

» 2= Proxies

» 2= Slots (preview)

[246]

Introduction to Microsoft Azure Functions

Chapter 9

2. The monitoring suite for the function that we created looks like this:

Home > All resources > Test-Packt - HttpTriggerPython31 > Test-Packt

Python31

Q App Insights is enabled for your function. Open Application Insights

Success count since Apr 1st Error count since Apr 1st

1 0

Invocation log & Refresh live event stream Invocation details
Function Status Details: L::: (duration) Parameter

HttpTriggerPython31 (Method:

POST, Uri: ..)) v aday ago (1,780 ms)

Logs

[247]

Introduction to Microsoft Azure Functions

Chapter 9

3. Now, click on the Open Application Insights option at the top of the menu. This
will take you to the detailed monitoring page:

Home > All resources > Test-Packt - HttpTriggerPython31 > Test-Packt

s Test-Packt

Application Insights - Last 24 hours (30 minute granularity) - ASP.NET web application

pel «

@

Overview

Activity log

Access control (IAM)

Tags

}(Diagnose and solve problems

INVESTIGATE
= -
=" Application map

Smart Detection

+ &

Live Metrics Stream

R

Metrics Explorer

K

Metrics (preview)

o)

Search

Availability

O\ Search

ﬁ‘ﬁ Metrics Explorer &8 Analytics

C'—) Time range D Refresh *** More

0 NEW - Share insights that combine charts, queries, and more with the Workbooks tool. =

Essentials
- Live Stream
O Click to
Alerts configure
Health

Overview timeline
TEST-PACKT

100ms
80ms
60ms
40ms
20ms
Oms

@ smart Detection
|

0 O == -

Users Detections (7d) Availability App map

I SERVER RESPONSETI... @

100ms
80ms
60ms
40ms
20ms
Oms

I PAGE VIEW LOAD TIME @

100
50
0

I SERVER REQUESTS @

100

[248]

Introduction to Microsoft Azure Functions Chapter 9

4. If you scroll down, you will see the function-specific metrics, such as the server
response times and request performance. This is very useful as it means we don't
need separate dashboards for monitoring all these statistics:

HttpTriggerPython31 > Test-Packt

¢ Test-Packt

Application Insights - Last 24 hours (30 minute granularity) - ASP.NET web application

pel « O\ Search ﬁ‘ﬁ Metrics Explorer == Analytics G Time range O Refresh *** More

0 NEW - Share insights that combine charts, queries, and more with the Workbooks tool. =

? Overview
Overview timeline =2

B Activity log TEST-PACKT -

100ms
a4 Access control (IAM) 80ms

60ms

40ms
& Tags 20ms SERVERRESPONSETI... ©

Oms I -

}(Diagnose and solve problems 100ms

80ms

60ms
INVESTIGATE 40ms

20ms PAGE VIEW LOAD TIME @
- A Oms I -
=" Application map 100

50 SERVER REQUESTS @
‘@ Smart Detection 0 I .
100

A~ Live Metrics Stream 52 I FAILED REQUESTS ©

R

Metrics Explorer 12 18 13 Apr 06

=4 Metrics (preview)
p Search
Total of Server Requests by Request Performance
Availability TEST-PACKT

REQUEST PERFORMANCE TOTAL % TOTAL

Now that we have learned about Microsoft Azure Functions logging and monitoring, let's
go through some best practices.

[249]

Introduction to Microsoft Azure Functions Chapter 9

Best practices for writing Azure Functions

We have learned how to create, configure, and deploy Microsoft Azure Functions. We will
now learn about the best practices for using them:

* Microsoft Azure Functions don't have a huge support for Python like AWS
Lambda. They have a very limited set of Python-based triggers. So, you need to
write custom functions for most of them. Developers need to keep that in mind
before taking a decision on using Microsoft Azure Functions. The languages
supported by Microsoft Azure Functions are C#, F#, and JavaScript:

Choose a template below or go to the quickstart

) Experimental Language
Language: v All] Scenario: Al Support:
C#
F#
JavaScript

O Search by trigger, language

HTTP HTTP trigger

A function that will be run whenever it receives an HTTP
request, responding based on data in the body or query
string

C# F# JavaScript

¢ The experimental languages that are supported by Microsoft Azure Functions
are Bash, Batch, PHP, TypeScript, Python, and PowerShell:

[250]

Introduction to Microsoft Azure Functions Chapter 9

Choose a template below or go to the quickstart

Experimental Language

O Search by trigger, language Scenario: Al Support: m Enabled

Batch

C#

F#
JavaScript
PHP
PowerShell

Afunctiontt ~ Python . ever it receives an HTTP
request, res| 1YPESCTIPt 45 in the body or query
string

Batch C# F# JavaScript PowerShell
Python TypeScript

Timer trigger

e Make sure you use the security settings properly to secure your functions. You
can find all the settings you need in the Platform features options:

Home > All resources > Test-Packt

Test-Packt
Function Apps
O "Test-Packt" x Overview Platform features <% Function app settings % *
Pay-As-You-Go
A Search features
EE Function Apps
v <& Test-Packt o> GENERAL SETTINGS NETWORKING API
- EE Functions © <*> Function app settings = <> Networking API definition =
= Application settings = O ssL CORS
w f HttpTriggerPython31
1* Properties [z Custom domains
Int te
¥ Integrate <1 Authentication / Authorization APP SERVICE PLAN
& Manage All settings (i & Managed service identity .. App Service plan
Q_ Monitor Push notifications i1 Quotas
— CODE DEPLOYMENT
» =— Proxies
— Q} Deployment options MONITORING RESOURCE MANAGEMENT
b= Slots (preview)
Deployment credentials [Diagnostic logs ﬁ\ Activity log
Log streaming “‘. Access control (IAM)
DEVELOPMENT TOOLS & Process explorer @ Tags
2] Logic Apps = & Locks
B Console 14 Automation script
&K Advanced tools (Kudu)

[251]

Introduction to Microsoft Azure Functions Chapter 9

e Finally, use monitoring as much as possible, as it is crucial to log and monitor
serverless functions. We have already gone through the monitoring details and
the corresponding settings.

Summary

In this chapter, we learned about Microsoft Azure Functions and how to build them. We
learned about the various functionalities available, along with the available triggers for the
Python runtime. We also learned and experimented with the logging and monitoring
capabilities of Microsoft Azure Functions along with understanding and experimenting
with the experimental features of Azure such as the additional runtimes apart from the
standard set of languages it offers out of the box.

[252]

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Sasha Rosenbaum

Serverless
computing in

Azure with .NET

Serverless computing in Azure with .NET
Sasha Rosenbaum

ISBN: 978-1-78728-839-3

Understand the best practices of Serverless architecture

Learn how how to deploy a Text Sentiment Evaluation application in an Azure
Serverless environment

Implement security, identity, and access control

Take advantage of the speed of deployment in the cloud

Configure application health monitoring, logging, and alerts
e Design your application to ensure cost effectiveness, high availability, and scale

https://www.packtpub.com/application-development/serverless-computing-azure-and-net

Other Books You May Enjoy

Building Serverless
Architectures

Building Serverless Architectures
Cagatay Gurturk

ISBN: 978-1-78712-919-1

Learn to form microservices from bigger Softwares

Orchestrate and scale microservices

Design and set up the data flow between cloud services and custom business
logic

Get to grips with cloud provider’s APIs, limitations, and known issues
Migrate existing Java applications to a serverless architecture

Acquire deployment strategies

Build a highly available and scalable data persistence layer

Unravel cost optimization techniques

[254]

https://www.packtpub.com/application-development/building-serverless-architectures

Other Books You May Enjoy

Leave a review - let other readers know what
you think

Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

[255]

A

access
controlling, to Lambda functions 209
Amazon Web Services (AWS) 5
Ansible
reference link 171, 175
API execution
Lambda function, deploying for 111, 112, 114,
115,116,117
API| Gateway 17, 94
API resources 94
AssumeRole API
reference link 183
authentication
handling 118,119, 120, 121, 122, 123, 124,
125
AWS cookbook
reference link 169
AWS Key Management Service (KMS) 21, 29
AWS Lambda, triggers
about 6, 16
AP| Gateway 17
AWS Simple Notification Service (AWS SNS) 20
CloudWatch 18
S3 19
AWS Secure Token Service (STS) 183
AWS Serverless Application Model 211
AWS Simple Notification Service (AWS SNS) 18
AWS Simple Queue Service (SQS) 74
AWS SNS 20
AWS's Virtual Private Cloud (VPC) 32
Azure Function
best practices 250, 251, 252
creating 235, 237, 238
logging 246, 247, 248,249
monitoring 246,247, 248, 249

Index

triggers, working 239, 241,242,243, 244,245

C

Chef
reference link 167
CloudFormation
about 211
used, for building Lambda functions 215,216
used, for deploying Lambda functions 215, 216
CloudTrail
about 138, 140, 141, 142, 143, 144
reference link 138
CloudWatch trigger
about 84
working 85, 86, 87, 88, 89, 91
CloudWatch
about 18,128
functions 128, 129, 130, 132, 133, 134, 135,
136
Lambda metrics 145, 146, 148, 150, 152, 153,
154, 155
Lambda's logs 155, 156, 157, 158, 159, 160
cookbooks 171
cron facility
in triggers 9

D

Dead Letter Queue (DLQ) 32
deployment package
about 7, 23
creating 44, 45, 46, 48
Docker
reference link 22
Dynamic Host Configuration Protocol (DHCP) 195

E N

event-based architectural designs 5 Network Access Control List (ACL) 195
nohup
F reference link 176
function as a service (FAAS) 6 P
| platform as a service (PaaS) 6
Identity Access Management (IAM) 30
integration Q
settingup 101 queues 9, 10
L S
Lambda function S3 19
about 21 S3 trigger
access, controllingto 209 about 51
Advanced settings page 22 working 51, 52, 53, 54, 55, 56, 57, 58, 59
configuring 24, 26, 27, 28, 30, 31, 32 scaling
deploying, for APl execution 111,112, 114, 115, difficulties, handling 189, 190
116,117 difficulties, identifying 189, 190
executing, as containers 22, 23 secure session-based execution
logging statements 160, 162, 163, 165 STS, using for 210
securing, inside private subnets 206, 207, 208, Security Groups (SGs) 173
209 security
testing 34, 35, 38 best practices 182, 183, 185, 187
versioning 39, 40, 41, 42, 43 serverless API
Lambda’s logs building 102, 103, 104, 106, 107, 108, 110
in CloudWatch 155, 156, 157, 158, 159, 160 creating 94, 96, 97, 98, 100, 101
Lambda's metrics Serverless Application Model (SAM)
in CloudWatch 155 about 2,212,214
logging statements applications, deploying 216, 217, 218, 219,
in Lambda 160, 162, 163, 165 220,221, 222,223,224
logging security 225, 226, 228
in Azure Function 246,247, 248, 249 serverless architectures
about 5, 6, 7
M advantages 11
metrics, Lambda disadvantages 11, 12
in CloudWatch 145, 146, 148, 150, 152, 153, reasons, for debugging difficulties 13
154 scaling, considerations 12
microservice architecture 7, 8 servers
Microsoft Azure Functions 232, 233, 234 creating 175,178,179
Microsoft's Azure 5 terminating 175, 178, 179
monitoring SNS trigger
in Azure Function 246,247, 248, 249 about 61

[257]

working 61, 62, 63, 65, 66, 67, 68, 69, 71, 72,
73
SQS trigger
about 74
working 75, 77, 79, 81, 82, 83, 84
STS
using, inside Lambda for secure session-based
execution 210

T

third-party orchestration tools
Ansible 171,173,174
Chef 167, 169

triggers
working 239, 241, 242, 243, 244, 245

U

user controls
handling 118,119,120,121,122,123, 124,
125

\'

Version Control System (VCS) 39

Virtual Private Cloud (VPCs)
about 173,193,195,196,197,198,199
subnets 200,201, 203, 204

	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: The Serverless Paradigm
	Understanding serverless architectures
	Understanding microservices
	Serverless architectures don't have to be real-time only
	Pros and cons of serverless
	Summary

	Chapter 2: Building a Serverless Application in AWS
	Triggers in AWS Lambda
	Lambda functions
	Functions as containers
	Configuring functions
	Testing Lambda functions
	Versioning Lambda functions
	Creating deployment packages
	Summary

	Chapter 3: Setting Up Serverless Architectures
	S3 trigger
	SNS trigger
	SQS trigger
	CloudWatch trigger
	Summary

	Chapter 4: Deploying Serverless APIs
	API methods and resources
	Setting up integration
	Deploying the Lambda function for API execution
	Handling authentication and user controls
	Summary

	Chapter 5: Logging and Monitoring
	Understanding CloudWatch
	Understanding CloudTrail
	Lambda’s metrics in CloudWatch
	Lambda's logs in CloudWatch
	Logging statements in Lambda
	Summary

	Chapter 6: Scaling Up Serverless Architectures
	Third-party orchestration tools
	The creation and termination of servers
	Security best practices
	Identifying and handling difficulties in scaling
	Summary

	Chapter 7: Security in AWS Lambda
	Understanding AWS Virtual Private Clouds (VPCs)
	Understanding subnets in VPCs
	Securing Lambda inside private subnets
	Controlling access to Lambda functions
	Using STS inside Lambda for secure session-based execution
	Summary

	Chapter 8: Deploying a Lambda Function with SAM
	Introduction to SAM
	CloudFormation for serverless services
	Deploying with SAM
	Understanding security in SAM
	Summary

	Chapter 9: Introduction to Microsoft Azure Functions
	Introduction to Microsoft Azure Functions
	Creating your first Azure Function
	Understanding triggers
	Understanding logging and monitoring in Azures Functions
	Best practices for writing Azure Functions
	Summary

	Other Books You May Enjoy
	Index

