

Building Serverless
Applications with Python

Develop fast, scalable, and cost-effective web applications
that are always available

Jalem Raj Rohit

BIRMINGHAM - MUMBAI

Building Serverless Applications with
Python
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Merint Mathew
Acquisition Editor: Sandeep Mishra
Content Development Editor: Rohit Kumar Singh
Technical Editor: Ruvika Rao
Copy Editor: Safis Editing
Project Coordinator: Vaidehi Sawant
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Graphics: Jason Monteiro
Production Coordinator: Arvindkumar Gupta

First published: April 2018

Production reference: 1190418

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78728-867-6

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Jalem Raj Rohit is an IIT Jodhpur graduate with a keen interest in recommender systems,
machine learning, and serverless and distributed systems. Raj currently works as a senior
consultant—data science—and NLP at Episource, before which he worked at Zomato and
Kayako. He contributes to open source projects in Python, Go, and Julia. He also speaks at
tech conferences about serverless engineering and machine learning.

About the reviewer
Sanjeev Jaiswal is a computer graduate from CUSAT with 9 years of industrial experience.
He basically uses Perl, Python, AWS, and GNU/Linux for his day-to-day activities. He is
currently working on projects involving penetration testing, source code review, security
design and implementations in AWS, and cloud security projects.

He is learning DevSecOps and Security Automation currently as well. Sanjeev loves
teaching engineering students and IT professionals. He has been teaching in his leisure
time for the last 8 years.

Special thanks to my wife, Shalini Jaiswal, for her unconditional support, and my friends
Ranjan, Ritesh, Mickey, Shankar, and Santosh for their care and support all the time.
Thanks to the people at Packt for the project and the opportunity to learn good stuff from
skilled professionals through reviewing the project.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: The Serverless Paradigm 5
Understanding serverless architectures 6
Understanding microservices 7
Serverless architectures don't have to be real-time only 9
Pros and cons of serverless 11
Summary 14

Chapter 2: Building a Serverless Application in AWS 15
Triggers in AWS Lambda 16
Lambda functions 21
Functions as containers 22
Configuring functions 24
Testing Lambda functions 34
Versioning Lambda functions 39
Creating deployment packages 44
Summary 49

Chapter 3: Setting Up Serverless Architectures 50
S3 trigger 51
SNS trigger 61
SQS trigger 74
CloudWatch trigger 84
Summary 91

Chapter 4: Deploying Serverless APIs 93
API methods and resources 94
Setting up integration 101
Deploying the Lambda function for API execution 111
Handling authentication and user controls 118
Summary 126

Chapter 5: Logging and Monitoring 127
Understanding CloudWatch 128
Understanding CloudTrail 138
Lambda’s metrics in CloudWatch 145
Lambda's logs in CloudWatch 155
Logging statements in Lambda 160

Table of Contents

[ii]

Summary 165

Chapter 6: Scaling Up Serverless Architectures 166
Third-party orchestration tools 167
The creation and termination of servers 175
Security best practices 182
Identifying and handling difficulties in scaling 189
Summary 190

Chapter 7: Security in AWS Lambda 192
Understanding AWS Virtual Private Clouds (VPCs) 193
Understanding subnets in VPCs 200
Securing Lambda inside private subnets 206
Controlling access to Lambda functions 209
Using STS inside Lambda for secure session-based execution 210
Summary 210

Chapter 8: Deploying a Lambda Function with SAM 211
Introduction to SAM 212
CloudFormation for serverless services 215
Deploying with SAM 216
Understanding security in SAM 225
Summary 230

Chapter 9: Introduction to Microsoft Azure Functions 231
Introduction to Microsoft Azure Functions 232
Creating your first Azure Function 235
Understanding triggers 239
Understanding logging and monitoring in Azures Functions 246
Best practices for writing Azure Functions 250
Summary 252

Other Books You May Enjoy 253

Index 256

Preface
Serverless engineering is a new domain of engineering that allows developers to write code
and deploy infrastructures without having to worry about maintaining servers. This book
explains the concepts of serverless engineering with Python examples on cloud
architectures.

Who this book is for
This book is for Python developers who would like to learn about serverless architectures in
cloud-based platforms such as Azure and Amazon Web Services (AWS). Python
programming knowledge is assumed.

What this book covers
Chapter 1, The Serverless Paradigm, introduces the reader to the concepts of microservices
and serverless architectures, and provides a clear understanding of the pros and cons.

Chapter 2, Building a Serverless Application in AWS, covers AWS Lambda and explains the
concepts, workings, and the components involved in the tool in detail. It also explains the
nuances involved in security, user controls, and versioning code inside Lambda.

Chapter 3, Setting Up Serverless Architectures, goes into further detail about the various
triggers in AWS Lambda and how they integrate with the functions. The reader will learn
what the event structure of each trigger will look like and how to modify the Lambda
function with respect to the type of trigger used.

Chapter 4, Deploying Serverless APIs, explores the AWS API Gateway and also teaches the
reader how to build efficient, scalable serverless APIs using the API Gateway and Lambda.
It goes on to teach the reader how to improve the API by adding authorization and how to
set up user-level controls such as throttling of requests.

Chapter 5, Logging and Monitoring, presents the concept of logging and monitoring in
serverless applications. This is mostly still an unsolved problem in this domain. This
chapter guides the reader through setting up logging and monitoring in the AWS
environment with Python via custom metrics and logging. This chapter also goes into the
details of best practices when it comes to logging and monitoring Lambda functions in
Python.

Preface

[2]

Chapter 6, Scaling Up Serverless Architectures, discusses the practice of scaling up serverless
architectures for large workloads using several third-party tools. This chapter also teaches
the reader how to handle security, logging, and monitoring using the available Python
modules.

Chapter 7, Security in AWS Lambda, teaches readers to deploy secure serverless applications
by leveraging the AWS security features available. This involves having strict controls on
components that the application can access, on the users who can handle or access the
application, and so on. This also involves understanding AWS virtual private clouds and
subnets for an in-depth understanding of the security features and best practices you can
follow in AWS Lambda.

Chapter 8, Deploying a Lambda Function with SAM, looks at how to deploy Lambda
functions as infrastructure as code via the Serverless Application Model, which is a new
way of writing and deploying Lambda functions that makes it easier to integrate with other
IaaS services, such as CloudFormation.

Chapter 9, Introduction to Microsoft Azure Functions, familiarizes the reader with Microsoft
Azure Functions, and explains how to configure and understand the components of the
tool.

To get the most out of this book
The reader should be comfortable with the Python programming language. So, prior
experience with it is expected. Prior experience with cloud-based systems will also be
helpful.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "It is to be noted that the meta information should always be included for all SAM,
which includes AWSTemplateFormatVersion and Transform. This would
tell CloudFormation that the code you have written is an AWS SAM code and a serverless
application."

Preface

[3]

A block of code is set as follows:

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"For creating a function, you need to click on the orange Create a function button on the
right."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Preface

[4]

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

https://www.packtpub.com/

1
The Serverless Paradigm

Most probably, if you are reading this book, you have already heard about the serverless
paradigm and the terms serverless engineering and serverless architecture. Nowadays, the
way developers deploy applications has changed drastically, especially in the domain of
data engineering and web development, thanks to event-based architectural designs, also
called serverless architectures.

It is not uncommon to have idle resources and servers in production idle after the server
workload has finished, or waiting for the next workload to come. This introduces a bit of
redundancy in the infrastructure. What if there was no need for idle resources lying around
when there is no workload? What if resources can be created when necessary and be
destroyed once the work is done?

At the end of this chapter, you will understand how serverless architectures and functions
as a service work, and how you can build them into your existing software infrastructure.
You will also learn what microservices are, and decide whether microservices or serverless
operations are well-suited for your architecture or not. You will also learn how to build
serverless applications with Python on major cloud service providers, such as Amazon Web
Services (AWS) and Microsoft's Azure.

This chapter will cover the following points:

Understanding serverless architectures
Understanding microservices
Serverless architectures don't have to be real-time only
Pros and cons of serverless architectures

The Serverless Paradigm Chapter 1

[6]

Understanding serverless architectures
The concept of serverless architectures or serverless engineering revolves entirely around
understanding the concept of functions as a service. The most technical and accurate
definition of serverless computing on the internet is as follows:

"Serverless computing, also known as function as a service (FAAS), is a cloud
computing and code execution model in which the cloud provider fully manages starting
and stopping of a function's container platform as a service (PaaS)."

Now, let's go into the details of each part of that definition to understand the paradigm of
serverless computing better. We shall start with the term function as a service. It means that
every serverless model has a function that is executed on the cloud. These functions are
nothing but blocks of code, that are executed depending on the trigger that is associated
with the function. This is a complete list of triggers in the AWS Lambda environment:

The Serverless Paradigm Chapter 1

[7]

Now let's understand what manages the starting and stopping of a function. Whenever a
function is triggered via one of these available triggers, the cloud provider launches a
container in which the function executes. Also, after the function is successfully executed
the function has returned something, or if the function has run out of time, the container
gets thatched away or destroyed. The thatching happens so that the container can be reused
in the event of high demand and whenever there is very little time between two triggers.
Now, we come to the next part of the sentence, the function's container. This means that the
functions are launched and executed in containers. This is the standard definition of a
container from Docker, a company that made the concept of containers very popular:

"A container image is a lightweight, stand-alone, executable package of a piece of software
that includes everything needed to run it: code, runtime, system tools, system libraries,
settings."

This helps in packaging the code, the runtime environment, and so on of the function into a
single deployment package for seamless execution. The deployment package contains the
main code file for the function, all the non-standard libraries which are required for the
function to execute. The creation process of a deployment package looks very similar to that
of a virtual environment in Python.

So, we can clearly make out that there are no servers running round the clock in the case of
serverless infrastructures. There is a clear benefit for this, which includes not having a
dedicated Ops team member for monitoring the server boxes. So the extra member, if any,
can focus on better things, such as software research, and so on. Not having servers running
through the entire day saves a lot of money and resources for the company and/or
personally. This benefit can be very clearly seen among machine learning and data
engineering teams who make use of GPU instances for their regular workload. So having
on-demand serverless GPU instances running, saves a lot of money without the developers
or the Ops team needing to maintain them around the clock.

Understanding microservices
Similar to the concept of serverless, the design strategy, which is the microservice-oriented
strategy, has also been very popular recently. This architecture design existed a long time
before the idea of serverless came into existence though. Just as we tried to understand the
serverless architectures from the technical definition on the internet, we shall try to do the
same for microservices. The technical definition for microservices is:

"Microservices, also known as the microservice architecture, is an architectural style
that structures an application as a collection of loosely coupled services, which implement
business capabilities."

The Serverless Paradigm Chapter 1

[8]

Planning and designing the architecture in the form of microservices has its fair share of
positives and negatives, just like serverless architectures. It's important to know about both,
in order to appreciate and understand when and when not to leverage microservices in
your existing architecture. Let's look at this and understand the positives of having
microservice architectures, before moving over to the negatives.

Microservices help software teams stay agile, and improve incrementally. In simpler terms,
as the services are decoupled from each other, it is very easy to upgrade and improve a
service without causing the other to go down. For example, in social network software, if
the chat and the feed are both microservices, then the feed doesn't have to go down when
the software team are trying to upgrade or do minor fixes on the chat service. However, in
large monolithic systems, it is difficult to break things up so easily in the way one can do
with microservices. So, any fix or upgrade on even a small component of the architecture
comes with downtime with the fix taking more time than intended.

The sheer size of the code base of monolithic architectures itself acts as a hindrance progress
in the case of any small failures. Microservices, on the other hand, greatly help in boosting
developer productivity by keeping code bases lean, so that they can fix and improve the
service with very little or no overhead and downtime. Microservices can be much better
leveraged via containers, which provide effective and complete virtual operating system
environments, processes with isolation, and dedicated access to underlying hardware
resources.

However, microservices come with their own bunch of disadvantages and downsides, the
major one being having to deal with distributed systems. Now that each service is surviving
on its own, the architect needs to figure out how each of them interacts with the others in
order to make a fully functional product. So, proper co-ordination between the services and
the decisions regarding how services move data between them is a very difficult choice that
needs to be taken by the architect. Major distributed problems such as the consensus, the
CAP theorem, and maintaining the stability of consensus, and the connection, are some issues
that the engineer needs to handle while architecting for microservices. Ensuring and
maintaining security is also a major problem in distributed systems and microservices. You
needs to decide on separate security patterns and layers for each microservice, along with
the security decisions necessary for the data interaction to happen between the services.

The Serverless Paradigm Chapter 1

[9]

Serverless architectures don't have to be
real-time only
Serverless architectures generally are leveraged as real-time systems as they work as a
function as service which is triggered by a set of available triggers. However, this is a very
common misconception, as serverless systems can be leveraged equally well both as real-
time and batch architectures. Knowing how to leverage the concept of serverless systems as
batch architectures will open up many engineering possibilities, as all engineering teams
don't necessarily need or have real-time systems to operate.

Serverless systems can be batched by leveraging the following:

The cron facility in triggers
The concept of queues

Firstly, let's understand the concept of the cron facility in triggers. Serverless systems on the
cloud have the ability to set up monitoring, which enables the trigger to get triggered every
few minutes or hours and can be set as a normal cron job. This helps in leveraging the
concept of serverless as a regular cron batch job. In the AWS environment, Lambda can be
triggered as a cron via AWS CloudWatch, by setting the frequency of the cron by manually
entering the time interval as the input and also by entering the interval in the cron format:

The Serverless Paradigm Chapter 1

[10]

One can also leverage the concept of queues when building serverless batch architectures.
Let's understand this by setting an example data pipeline. Let's say the system which we
intend to build does the following tasks:

A user or a service sends some data into a database or a much simpler data store,1.
such as AWS's S3.
Once there are more than 100 files in my data store, we'll want to do some task.2.
Let's say, doing some analytics on them, for example, such as counting the pages.

This can be achieved via queues, and this is one of the simpler serverless systems we can
consider as an example. So, this can be achieved as follows:

The user or the service uploads or sends the data to the data store which we have1.
selected.
A queue is configured for the purpose of this task.2.
An event can be configured to S3 buckets or data stores so that as soon as data3.
enters into the store, a message is sent to the queue which we have configured
earlier.
Monitoring systems can be set to monitor the queue for the number of messages4.
in it. It is advisable to use the monitoring system of the cloud provider you are
using so that the system stays completely serverless.
Alarms can be set to the monitoring systems, configuring a threshold for these5.
alarms. For example, the alarm needs to be triggered whenever the number of
messages in our queue reaches or exceeds 100.
This alarm can act as a trigger to the Lambda function which does the analytics6.
by first receiving messages from the queue and then querying the data store
using the filename received from the message.
Once the analytics are completed on the files, the processed files can be pushed to7.
another data store for storage.
After the entire task is completed, the container or the server where the Lambda8.
function has run will be terminated, thus making this pipeline completely
serverless.

The Serverless Paradigm Chapter 1

[11]

Pros and cons of serverless
As we now understand what serverless architectures and pipelines look like, how they may
be leveraged into existing architectures, and also how microservices help keep architectures
leaner and boost developer productivity, we shall look at the pros and cons of serverless
systems in detail, so that software developers and architects can make decisions regarding
when to leverage the serverless paradigm into their existing systems and when not to.

The positives of serverless systems are:

Lower infrastructure costs: By deploying serverless systems, the infrastructure
costs can be greatly optimized, as there would not be a need for servers to be
running around the clock every day. As the servers start whenever the function is
triggered, and stop whenever the function gets executed successfully, the billing
would only be done for that brief time period when the function was running.
Less maintenance needed: By virtue of the preceding reason, there is also no
need for continuous monitoring and maintenance of servers. As the functions and
triggers are automated, there is almost zero maintenance required for serverless
systems.
Higher developer productivity: As the developers don't need to worry about
downtime and server maintenance, they can focus and work on better software
challenges, such as scaling and designing functionalities.

The remaining part of the book will show you how serverless systems are changing the way
software is done. So, as this chapter is intended to help architects decide whether serverless
systems are a good choice for their architecture or not, we shall now look at the
disadvantages of serverless systems.

The disadvantages of serverless systems are:

Time limit of the function: The function which is whether executed, be it AWS's
Lambda or GCP's cloud functions, has an upper time limit of 5 minutes. This
makes execution of heavy computations impossible. However, this can be solved
by executing a provisioning tool's playbook in nohup mode. This will be covered
in detail, later in the chapter. However, making the playbook ready and setting
up the container and anything else should be completed within the 5 minute time
limit. The container gets automatically killed when the 5 minute limit is exceeded.

The Serverless Paradigm Chapter 1

[12]

No control over the container environment: The developer has no control over
the environment of the container that is being created for executing the function.
The operating system, the filesystem, and so on, are all decided by the cloud
provider. For example, AWS's Lambda functions are executed inside containers
that run the Amazon Linux operating system.
Monitoring containers: Apart from the basic monitoring capabilities that are
provided by the cloud provider via their in-house monitoring tools, there is no
mechanism to do detailed monitoring of the container that is executing the
serverless function. This becomes even more difficult when scaling up serverless
systems to accommodate distributed systems.
No control on security: There is no control on how the security of the data flow is
ensured, as there is very little control over the container's environment. The
container can be run in the VPC and subnets of the developer's choice, though,
which helps work around this disadvantage.

However, serverless systems can be scaled up to distributed systems for large- scale
computations where the developer need not worry about the time limit. As already
mentioned, this will be discussed in detail in the upcoming chapters. However, for insight
into an intuition on how one can choose serverless systems over monolithic systems for
large-scale computations, let us understand some important pointers that need to be kept in
mind when taking that architectural decision.

The pointers to be kept in mind when scaling serverless systems to distributed systems are:

To scale up serverless systems into serverless distributed systems, one must
understand how the concept of nohup works. It is a POSIX command that allows
programs and processes to run in the background.
Nohup processes should be properly logged, including both the output and the
error logs. This is the only source of information for your processes.
A provisioning tool, such as Ansible or Chef or a similar one, needs to be
leveraged to create a master-workers architecture which has been spawned via
the playbook running in nohup mode in the container where the serverless
function is being executed.
It is a good practice to ensure that all tasks that are being executed by the
provisioning tool via the master server are properly monitored and logged, as
there is no way one can retrieve the logs once the entire setup finishes executing.

The Serverless Paradigm Chapter 1

[13]

Proper security needs to be ensured by using a temporary credential facility
available from the cloud providers.
Proper closure should be ensured for the system. The workers and the master
should self-terminate immediately after the pipeline of tasks finishes executing.
This is very important and this is what makes the system serverless.
Generally, temporary credentials come with an expiry time, which is 3,600
seconds for most environments. So, if the developer is using temporary
credentials to execute a task which is supposed to take more than the expiry time,
then there is a danger of the credentials getting expired.
Debugging distributed serverless systems is an extremely difficult task for the
following reasons:

Monitoring and debugging a nohup process is extremely difficult.
Whenever you want to debug one, you have to either refer to the
log file created by the process or kill the nohup process by using
the process ID, and then manually run the scripts for debugging.
As the complete list of tasks executes sequentially in the
provisioning tool, there is a danger that the instances may get
terminated because the developer has forgotten to kill the nohup
process before starting the debugging process.
As this is a distributed system, it goes without saying that the
architecture should be able to self-heal in the case of any failure or
a disaster. An example scenario can be when one of the workers
goes down while performing some operation on a bunch of files.
The entire bunch of files is now lost, and there is no means of
recovery.
Another advanced disaster scenario can be when two worker
servers go down while performing some operations on a bunch of
files. In this case, the developer does not know which files have
been executed successfully and which haven't.

It is a good practice to ensure that all the worker instances receive an equal
amount of the load to execute so that the load across the distributed system stays
even and time and resources are well optimized.

The Serverless Paradigm Chapter 1

[14]

Summary
In this chapter, we learned what serverless architecture is. Most importantly, the chapter
helps architects decide if serverless is the way forward for their team and their engineering,
and how to transition/migrate from their existing infrastructure to a serverless paradigm.
We also looked at the paradigm of microservices and how they help make lightweight and
highly agile architectures. This chapter also went into great detail about when a team
should start thinking about microservices and when can they migrate or break their existing
monolith(s) into microservices.

We then learned the art of building batch architectures in the serverless domain. One of the
most common myths is that serverless systems are only for real-time computation purposes.
However, we have learned how to leverage these systems for batch computations too, thus
facilitating a whole lot of applications with the serverless paradigm. We looked at the pros
and cons of going serverless so that better engineering decisions can be taken accordingly.

In the next chapter, we will cover a very detailed understanding of how AWS Lambda
works, which is the core component of serverless engineering in the AWS cloud
environment. We will understand how triggers work and how AWS Lambda functions
work. You will learn about the concept of leveraging containers for executing serverless
functions and the associated computational workload. Following that, we will also learn
about configuring and testing Lambda functions, along with understanding the best
practices while doing so. We will also cover versioning Lambda functions, in the same way
versioning is done in code, and then create deployment packages for AWS Lambda, so that
the developer can accommodate third-party libraries comfortably, along with the standard
library ones.

2
Building a Serverless

Application in AWS
This chapter will introduce the concept of serverless applications using AWS Lambda as the
tool of choice. This will help you understand the concept, intuition, and working
components involved in a serverless tool. It will also explain the nuances involved in
security, user-controls, and versioning code inside Lambda. You will be guided via hands-
on tutorials and lessons for understanding and learning to use AWS Lambda. So, it is
recommended that you follow along this chapter with a laptop and an AWS account setup
to easily execute the given instructions.

This chapter will cover the following topics:

Triggers in AWS Lambda
Lambda functions
Functions as containers
Configuring functions
Testing Lambda functions
Versioning Lambda functions
Creating deployment packages

Building a Serverless Application in AWS Chapter 2

[16]

Triggers in AWS Lambda
Serverless functions are on-demand computational concepts. So, there has to be an event
that needs to trigger a Lambda function so that the entire computational process is started.
AWS Lambda has several events which can act as a trigger. Almost all services of AWS can
act as AWS Lambda's triggers. Here is the list of services that you can use for generating
events for Lambda to respond to:

API Gateway
AWS IoT
CloudWatch Events
CloudWatch Logs
CodeCommit
Cognito Sync Trigger
DynamoDB
Kinesis
S3
SNS

The triggers page of AWS Lambda looks like this:

Building a Serverless Application in AWS Chapter 2

[17]

Let's take a look at some of the following important and widely-used triggers that are
available, and understand how they can be leveraged as FaaS in the serverless paradigm.
They are as follows:

API Gateway: This trigger can be used to create efficient, scalable, and serverless
APIs. One scenario where a serverless API makes sense would be while building
a querying interface for S3. Let us assume that we have a bunch of text files in an
S3 bucket. Whenever a user hits the API with a query parameter, which can be
some word that we want to search in the text files in the bucket, the API
Gateway's trigger will launch a Lambda function that executes the computational
logic and workload for executing the query. The Lambda function that we want
our API to trigger can be specified at the API creation time. The trigger will be
created accordingly in the corresponding Lambda function's console. This is what
it looks like:

Building a Serverless Application in AWS Chapter 2

[18]

CloudWatch: It events mostly help the user in setting the cron scheduling for
Lambda. The CloudWatch Logs trigger is useful whenever a user wants to
execute a computational workload depending on some keyword in the
Cloudwatch Logs. However, the CloudWatch Alarms cannot trigger Lambda
directly via the CloudWatch trigger. They have to be sent via a notification
system, such as the AWS Simple Notification Service (AWS SNS). This is how
you can create a cron execution in AWS Lambda. In the following screenshot, the
Lambda function is set to execute every minute:

Building a Serverless Application in AWS Chapter 2

[19]

S3: This is a document store of AWS. So, whenever a file is added, removed, or
changed, an event will be sent to AWS Lambda when added as a trigger. So, if
you want to do some computational workload on a file as soon as the file gets
uploaded, then this trigger helps to do that. This is what an S3's event structure
looks like:

Building a Serverless Application in AWS Chapter 2

[20]

AWS SNS: The SNS service of AWS helps users to send notifications to other
systems. This service can also be used for catching CloudWatch Alarms and
sending the notifications to a Lambda function for computational execution. This
is what a sample SNS event looks like:

Building a Serverless Application in AWS Chapter 2

[21]

Lambda functions
Lambda functions are the core operating parts of a serverless architecture. They contain the
code which is supposed to be executed. These functions are executed whenever the trigger
attached to it has been set off. We have already learned about some of the most popular
Lambda triggers in the previous section.

Whenever a Lambda function is triggered, it creates a container with the respective settings
set by the user. We'll learn more about the container in our next section.

The spinning up of containers takes a bit of time, which may result in a latency whenever a
fresh invocation of a Lambda function is done, as it takes time to set up the environment
and bootstrap the settings mentioned by the user in the Advanced settings tab. So, to
overcome this latency, AWS thaws a container for some time for reuse in case of another
Lambda invocation within the thawing time. So, using a thawed or a ready-made Lambda
function helps in overcoming the latency problem. However, the same global namespace of
the thawed container would be reused for the new invocation too.

So, if the Lambda function has any global variables that get manipulated inside the
function, it is a good idea to convert them into local namespaces, as the manipulated global
namespace variables will be reused, leading to faulty execution results of the Lambda
function.

The user needs to specify the technical details for the Lambda function in the Advanced
Settings tab, which include the following:

Memory (MB): This is the maximum memory that the Lambda function needs to
be allocated for the purpose of your function. The CPU of the container would be
assigned accordingly.
Timeout: The maximum amount of time the function needs to execute before the
container gets automatically stopped.
DLQ Resource: This is a dead-letter setting to AWS Lambda. The user can add
either an SQS queue or an SNS topic for configuring this. Lambda functions get
asynchronously retried for at least five times on failure.
VPC: This enables the Lambda function to access components or services in some
particular VPCs. The Lambda function executes in a default VPC of its own.
KMS key: If there are any environment variables entered along with the Lambda
function, this helps us encrypt them using an AWS Key Management Service
(KMS) by default.

Building a Serverless Application in AWS Chapter 2

[22]

The Lambda function's Advanced settings page looks like this:

Functions as containers
For understanding the concept of functions being executed as/inside containers, we need to
properly understand the concept of containers. To cite the definition of a container from the
Docker documentation (https:/ ​/​www. ​docker. ​com/ ​what- ​docker):

A container image is a lightweight, stand-alone, executable package of a piece of software
that includes everything needed to run it: code, runtime, system tools, system libraries,
settings.

https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://www.docker.com/what-docker

Building a Serverless Application in AWS Chapter 2

[23]

What is available for both Linux and Windows based applications; containerized software
will always run the same, regardless of the environment.

Containers isolate software from its surroundings (for example, differences between
development and staging environments) and help reduce conflicts between teams running
different software on the same infrastructure.

So, the concept of containers is that they are self-sustainable isolated environments just like
the containers in a container ship that can be hosted and be worked upon any host OS, the
host OS being the host ship in our analogy. The figurative depiction of the analogy would
look something like this:

Similar to the aforementioned analogy, AWS Lambda's functions are also launched inside a
unique container for each function. So, let us understand this topic in more detail, point by
point:

The Lambda function can be in the form of a single code file or in the form of a1.
deployment package. The deployment package is a zipped file that includes the
core function file along with the libraries which would be used by the function.
We shall be learning in detail about how to create the deployment package in the
Creating deployment packages section of this chapter.
Whenever a function is triggered or started, AWS spins up an EC2 instance with2.
the AWS Linux operating system for running the function. The configuration of
the instance would be dependent on the ones provided by the user in the
Advanced settings tab of the Lambda function.
There is a maximum time limit of 300 seconds, or 5 minutes, for a function to3.
execute successfully, after which the container would be destroyed. So, this needs
to be kept in mind while designing the Lambda functions and/or the deployment
packages.

Building a Serverless Application in AWS Chapter 2

[24]

Configuring functions
In this section, we will go through the ways of configuring Lambda functions and
understand all the settings in great detail. Like in the previous section, we will learn about
each configuration and its settings, as follows:

You can go to the page of AWS Lambda by selecting it from the drop-down menu1.
that is present in the top-left corner of the AWS console. This can be done as
follows:

Once the Lambda option is selected, it redirects the user to the AWS Lambda2.
console, which looks something like this:

Building a Serverless Application in AWS Chapter 2

[25]

For creating a function, you need to click on the orange Create a function button3.
on the right. This will open a console for the function creation. This looks
something like this:

Building a Serverless Application in AWS Chapter 2

[26]

Let's create a function from scratch in order to understand the configurations4.
better. So, for doing that, click on the Author from scratch button on the top-right
corner. After clicking it, the user will be directed to Lambda's first-run console,
which looks something like this:

This page has three configurations which the user can select, which are Name,5.
Role, and Existing role. The Name value is where the user can enter the name of
the Lambda function. The Role value is how you can define permissions in the
AWS environment. The Role value's drop-down list would contain the following
options: Choose an existing role, Create new role from template(s), and Create a
custom role. They can be seen as follows:

Building a Serverless Application in AWS Chapter 2

[27]

The Choose an existing role option will enable us to select an already existing role
with pre-configured permissions. The second option helps the user with creating a
role from pre-baked templates. The Create a custom role option allows the user to
create a role with permissions from scratch. The list of pre-baked roles looks like
this:

Building a Serverless Application in AWS Chapter 2

[28]

Select one from the pre-baked templates for the sake of this tutorial. By6.
pressing Create function in the lower-right part of the screen, we will land on the
Lambda function's creation page, which looks similar to this:

The preceding page indicates that we have successfully created an AWS Lambda7.
function. We shall now explore the advanced settings of this function. They are
present in the lower part of the same console. They will look something like this:

Building a Serverless Application in AWS Chapter 2

[29]

We shall now try to understand each of those parts in detail.

The unfurled Environment variables section contains text boxes to enter the key-8.
value pair of environment variables that will be used by our function. One can
also optionally mention details on the encryption setting that we want to have for
the environment variables. The encryption needs to be done via AWS KMS (Key
Management Service). The unfurled settings box of the environment variables
looks something like this:

Building a Serverless Application in AWS Chapter 2

[30]

The next settings section is Tags. This is similar to the tagging feature of all the9.
available AWS services for easy service discovery purposes. So, similar to all
AWS services's tags, this also needs just a key and a value. The unfurled Tags
section looks something like this:

The next section that will be visible after the Tags section is the Execution role10.
section, in which the user can set the Identity Access Management (IAM) role for
the execution of the Lambda function. As we have already discussed what IAM
roles are previously in the book, we will not be covering that again here. If the
user has not set the role when creating the function itself, they can always set that
here. The section will be visible in the Lambda console as follows:

Building a Serverless Application in AWS Chapter 2

[31]

The next section is the Basic settings section, which includes settings such as the11.
memory of the Lambda container, time-out for the container, and the description
for the Lambda function. The memory of the container can range from 128 MB to
1,536 MB. The user can choose any value within that range and will be billed
accordingly. The time-out can be set from 1 second to 300 seconds, which is 5
minutes. The time-out is the time which the Lambda function and its container
would run before being stopped or terminated. The next setting is the
Description value of the Lambda function, which acts as the metadata of a
Lambda function. The section looks like this in the console:

Building a Serverless Application in AWS Chapter 2

[32]

The next section is the Network section, which is also about the network settings12.
of the Lambda function related to AWS's Virtual Private Cloud (VPC) and
related subnets. Even if No VPC is selected as an option, AWS Lambda runs in its
own secure VPC. However, if your Lambda function accesses or deals with any
other service which is in a particular VPC or in a subnet, the corresponding
information needs to be added in this section so that the network allows traffic
from the Lambda function's container. This section looks like this in the console:

The sensitive information in the preceding screenshot, such as the IP address and
the ID of the VPC, are masked for security purposes.
The next section is the Debugging and error handling section. This section13.
enables the user to set up measures for ensuring fault tolerance and exception
handling of the Lambda function. This includes the Dead Letter Queue (DLQ)
settings.
Lambda automatically retries failed executions for asynchronous invocations. So,14.
the payloads that were not processed would be automatically forwarded to the
DLQ resource. The DLQ settings look like this in the Lambda console:

Building a Serverless Application in AWS Chapter 2

[33]

The user can also enable active tracing for the Lambda functions, which
would help in detailed monitoring of the Lambda container. This setting in
the Debugging and error handling section of the Lambda console looks like
this:

Building a Serverless Application in AWS Chapter 2

[34]

Testing Lambda functions
Just like every other software system and programming paradigm, proper testing of
Lambda functions and serverless architectures is very important before deploying into
production. We will try to understand the testing of Lambda functions in the following
points:

In the top-most bar of the Lambda console, one can observe the Save and test1.
option, which is represented by an orange button. This button saves the Lambda
function and then runs the configured tests on that function. This looks
something like this in the console:

Also, in the same bar, there exists a drop-down menu that reads Select a test2.
event…. This contains a list of testing events available for testing Lambda
functions. The drop-down looks like this:

Building a Serverless Application in AWS Chapter 2

[35]

Now, for further configuration of test events for the Lambda function, the user3.
needs to select the Configure test events option in the drop-down. This will open
a popup with the test events menu, which looks like this:

Building a Serverless Application in AWS Chapter 2

[36]

That would open the basic Hello World template, which has three pre-configured4.
JSON format test events, or edge cases. However, depending on what the
Lambda function does, one can select some other test event. The available list of
testing templates can be seen in the Event template drop-down menu. The list in
the drop-down looks something like this:

For example, let's imagine we are building a pipeline that involves the Lambda5.
function getting started whenever an image file is added to an S3 bucket, and the
function does some image processing tasks and puts it back to some data store.
The test event of the S3 Put notification looks something like this:

Building a Serverless Application in AWS Chapter 2

[37]

After selecting or creating a test event, the user can select the Create option in the6.
bottom-right corner of the event creation console, wherein you shall be asked to
enter a name for the event. After entering the necessary details, the user will be
re-directed back to the Lambda console. Now, when you check the
TestEvent drop-down in the Lambda console, you can see the saved test event in
the list. This can be verified as follows:

Building a Serverless Application in AWS Chapter 2

[38]

As I have named the event as TestEvent, the test is visible by the same name in
the events drop-down menu.

Additionally, when we take a closer look at the event structure of S3 in the test6.
event, we can observe the meta-details that are being made available to the
Lambda function. The event structure looks like this:

Building a Serverless Application in AWS Chapter 2

[39]

Versioning Lambda functions
The concept of the Version Control System (VCS) is for controlling and managing versions
of code. This functionality is available directly from the main Lambda console. Let's try and
learn how to version our Lambda functions:

The first option in the Actions drop-down in the Lambda console is the Publish1.
new version option. This option can be seen here:

Building a Serverless Application in AWS Chapter 2

[40]

When the Publish new version option is selected, the versioning popup of the2.
Lambda console would be seen on the console. This would ask about the name
for the new version of your Lambda function. The popup looks something like
this:

Building a Serverless Application in AWS Chapter 2

[41]

After clicking the Publish button, you will be re-directed to the main Lambda3.
console. The successfully created Lambda version in the console looks something
like this:

Building a Serverless Application in AWS Chapter 2

[42]

In the bottom half of the page, the following message can be noticed: Code and4.
handler editing is only available for the $LATEST version. This means that one
can only edit the code in the version named $LATEST. The versioned version of
Lambda functions are read-only and cannot be edited and manipulated. When
something goes wrong or when the user wants to revert back or refer to a
previous version, that version will overlay the $LATEST version to make edits
possible. The message looks like this:

Building a Serverless Application in AWS Chapter 2

[43]

When the Click here to go to $LATEST link is clicked, the user will be re-5.
directed to the $LATEST version of the function, which can be edited and
manipulated by the user. The console of the $LATEST version of the Lambda
function looks like this:

Building a Serverless Application in AWS Chapter 2

[44]

Creating deployment packages
Lambda functions that have external libraries as dependencies can be packaged as
deployment packages and be uploaded into the AWS Lambda console. This is very similar
to creating a virtual environment in Python. So in this section, we shall learn and
understand the process of creating Python deployment for using in the Lambda functions.
We shall try and understand the process of creating deployment packages in detail, as
follows:

Deployment packages are generally in the format of ZIP packages. The contents1.
of the ZIP package is exactly the same as a normal library of any programming
language.
The package structure should be such that the library folders and the function file2.
are in the same destination or in the same hierarchy inside the folder structure of
the deployment package. The layout looks something like this:

Building a Serverless Application in AWS Chapter 2

[45]

The Python libraries can be installed by using the pip install3.
<library_name> -t <path_of_the_target_folder> command. This will
install the package inside the target folder. This can be done as in the following
screenshot:

Now, when we have the entire deployment package's folder along with the4.
library folders ready, we need to zip all of the folders including the Lambda
function file before uploading it into the console. The following screenshot shows
how the zipping needs to be done as per the folder hierarchy:

Building a Serverless Application in AWS Chapter 2

[46]

Now, as the zipped package is ready, we shall be trying to upload the package to5.
the Lambda console for processing. For uploading a Lambda package, we need to
select the drop-down list of the Code entry type option in the console. The
selection looks like this in the Lambda console:

Once the Upload a .ZIP file option is selected, the uploader will become visible,6.
where the user can directly upload the deployment package or even upload it via
an S3 bucket. The wizard would look like this in the Lambda console:

Building a Serverless Application in AWS Chapter 2

[47]

As mentioned previously, the user can choose to upload the deployment package7.
via an S3 file location too. This wizard looks like this in the Lambda console:

Building a Serverless Application in AWS Chapter 2

[48]

The deployment package's naming should be aligned with the values entered in8.
the handler part of the settings. The deployment package's name and the Lambda
function file's name are separated by a dot (.) and arranged in that order. This
can be explicitly seen in the following screenshot:

index should be the name of the Lambda function's file name deployment
package. The handler function file is the name of the core function handler
inside, which is the Lambda function. As AWS's documentation states:

The module-name export value in your function". For example, index.handler would call
exports.handler in index.py.

Building a Serverless Application in AWS Chapter 2

[49]

Summary
In this chapter, we have learned the concepts of how triggers work for AWS Lambda and
how to select triggers depending on the problem statement and time intervals, in case of
cron job triggers. We understood what Lambda functions are, along with understanding
their functionalities and settings related to memory, VPCs, security, and fault tolerance. We
also learned about the way container reuse is done under the hood specifically for AWS
Lambda. Then, we covered event-driven functions and how they are implemented under
the hood, the concept of containers, and their uses and applications in the domain of
software engineering in general. Most importantly, from the concepts we learned regarding
containers, we can now appreciate the options for choosing containers for running the
Lambda functions.

After that, we talked about all the configuration settings available in the AWS Lambda
dashboard, which are necessary to build and run a Lambda function from start to finish
without any settings-related problems. We also learned about and understood the security
settings inside Lambda so that the necessary VPC details and security keys settings are
taken care of when configuring our Lambda functions. This was followed by testing
Lambda functions depending on the choice of trigger selected. We learned what the
responses of various AWS services look like, as they are the inputs for the Lambda
functions. We then learned how to write custom hand-made tests for custom testing
purposes.

Following that, we saw how versioning happens for the AWS Lambda functions. We
learned the differences between past and present versions. We also learned that the present
version is immutable, unlike the past versions, and also how to revert to past versions
without much effort. We also learned how to create deployment packages for functions that
have dependencies on external packages, which are not included in Python's standard
library. We came across the function code naming nuances, including the filename and the
method handler names, followed by the two ways deployment packages can be uploaded
to the Lambda console; one being a manual upload and the other being from an S3 file
location.

In the next chapter, we will be gaining a detailed understanding of the different triggers
available in the Lambda console and how to use them. We will also learn about
implementing them in Python code. We will understand the event structures and the
responses from different AWS services and use that to build our Lambda functions. We will
understand how to integrate each trigger into a Lambda function and do a specific task in
Python. Finally, we will also be learning about ideas and best practices on how to move
your existing infrastructures to serverless using the serverless paradigm.

3
Setting Up Serverless

Architectures
So far, we have understood what the serverless paradigm is, and also how serverless
systems work. We have also understood how AWS Lambda's serverless tool works. We
have also learned the basics of how triggers work in AWS Lambda as well as a detailed
understanding of the system settings and configuration available to the user in the Lambda
environment. We have also learned how the Lambda console works, and also how to
identify and use various parts of the Lambda console in detail, including code deployment,
trigger manipulation, deploying tests in the console, versioning our Lambda function, and
also the different settings available.

By the end of this chapter, you will have a clear understanding of all the important triggers
available for AWS Lambda and how you can use them to set up efficient Lambda
architectures. You will also understand what an event structure is, and what an event
structure looks like for some AWS resources, and how you can use that knowledge to write
and deploy better trigger-based Lambda architectures.

This chapter will cover the following points:

S3 trigger
SNS trigger
SQS trigger
CloudWatch Event and Logs trigger

Setting Up Serverless Architectures Chapter 3

[51]

S3 trigger
S3 is the AWS object storage service, where the user can store and retrieve any type of
object. In this section, we shall be learning how the S3 trigger works, what the event
structure of an S3 event looks like, and also how to make use of them in the learning to
build a Lambda function.

We will be building a Lambda function that does the following:

Receives a PUT request event from the S3 service1.
Prints the name of the file and other major details2.
Transfers that file to a different bucket3.

So, let's get started on learning how to use the S3 trigger efficiently. We will be working on
this task step-by-step, as follows:

Firstly, we need to create two S3 buckets for the task. One will be the bucket1.
where the file will be uploaded by the user. The other will be the one where the
file is transferred and uploaded by the Lambda function.
The S3 console looks like the following screenshot when there are no pre-existing2.
buckets. You can go there by selecting the S3 service from the drop-down
Services menu in the top-left of your AWS console:

Setting Up Serverless Architectures Chapter 3

[52]

Let's create two buckets, namely receiver-bucket and sender-bucket.3.
The sender-bucket bucket will be used as the bucket where the user uploads4.
the files. The receiver-bucket bucket is the one where the Lambda function
uploads the files. So, as per our problem statement, whenever we upload files to
the sender-bucket bucket, the Lambda function gets triggered and the files get
uploaded to receiver-bucket.
When we click on the Create bucket button in the S3 console, we get a dialog that5.
looks like this:

Setting Up Serverless Architectures Chapter 3

[53]

In the preceding dialog, we need to enter the following settings:6.
Bucket Name: As the name suggests, we need to enter the name of the
bucket we are creating. For the creation of the first bucket, name
it sender-bucket and name the second bucket receiver-bucket.
Region: This is an AWS region we want the bucket to reside in. You
can use the default region for this or the region closest to wherever you
are located.
Copy settings from an existing bucket: This specifies whether we
want to use the same settings as in some other bucket in the console for
this bucket too. As we do not currently have any other bucket in our
console, we can skip this setting by leaving it empty. After this, you
can click on the Next button in the bottom-right part of the popup.

Once we click Next, we get redirected to the second tab of the popup, which is7.
the Set properties menu and looks like this:

Setting Up Serverless Architectures Chapter 3

[54]

In this part of the popup, we need to decide on the following settings:8.
Versioning: This is relevant if we want to keep multiple versions of the
files in the S3 bucket. This setting is required when you need a Git style
versioning for your S3 bucket. Note that the storage cost would be
included in line with the number of versioned documents.
Server access logging: This will log all the access requests to the S3
bucket. This helps debug any security breaches and secure the S3
bucket and the files.
Tags: This will tag the bucket using a Name:Value style, the same style
of tagging as we learned for Lambda functions.
Object-level logging: This will use the CloudTrail service of AWS to
log all the access requests and other details and activities on the S3
bucket. This will also include CloudTrail costs too. So, use this feature
only if you need detailed logging. We shall skip using this for this
section.

After finishing creating the buckets, the S3 console will look like this, with both9.
the created buckets listed:

We have successfully created S3 buckets for our task. Now, we have to create a10.
Lambda function that can recognize an object upload in the sender-bucket
bucket and send that file to the receiver-bucket bucket.

Setting Up Serverless Architectures Chapter 3

[55]

While creating the Lambda function, this time choose the s3-get-object-python 11.
blueprint from the listed options available:

Setting Up Serverless Architectures Chapter 3

[56]

Configure the bucket details in the next step. In the Bucket section, select the12.
sender-bucket bucket and select the Object Created (All) option in the Event
type action. This is because we want to send a notification to Lambda whenever
an object gets created in the sender-bucket bucket. The completed part of the
section will look like this:

Setting Up Serverless Architectures Chapter 3

[57]

Once you have enabled the trigger, Lambda helps you by creating a boilerplate13.
code for the task. All we need to do is write the code to put the object into the
receiver-bucket bucket. The boilerplate code can be seen in the Lambda
function code section:

Setting Up Serverless Architectures Chapter 3

[58]

When this step has been completed and you have clicked the Create function14.
button, you can see the Triggers section of the Lambda console, which displays a
success message in green at the top:

I have uploaded a small image file into the sender-bucket bucket. So, now the15.
contents of the sender-bucket bucket look like this:

Setting Up Serverless Architectures Chapter 3

[59]

As soon as this file had been uploaded, the Lambda function got triggered. The16.
Lambda function code looks like this:

from __future__ import print_function

import json
import urllib
import boto3
from botocore.client import Config

print('Loading function')
sts_client = boto3.client('sts', use_ssl=True)

Assume a Role for temporary credentials
assumedRoleObject = sts_client.assume_role(
RoleArn="arn:aws:iam::080983167913:role/service-role/Pycontw-
Role",
RoleSessionName="AssumeRoleSession1"
)
credentials = assumedRoleObject['Credentials']
region = 'us-east-1'

def lambda_handler(event, context):
 #print("Received event: " + json.dumps(event, indent=2))

 # Get the object from the event and show its content type
 bucket = event['Records'][0]['s3']['bucket']['name']
 key = urllib.unquote_plus(event['Records'][0]['s3']
['object']['key'].encode('utf8'))
 try:
 # Creates a session
 session = boto3.Session(credentials['AccessKeyId'],
credentials['SecretAccessKey'] ,
aws_session_token=credentials['SessionToken'],
region_name=region)

 #Instantiates an S3 resource
 s3 = session.resource('s3',
config=Config(signature_version='s3v4'), use_ssl=True)

 #Instantiates an S3 client
 client = session.client('s3',
config=Config(signature_version='s3v4'), use_ssl=True)

 # Gets the list of objects of a bucket
 response = client.list_objects(Bucket=bucket)

Setting Up Serverless Architectures Chapter 3

[60]

 destination_bucket = 'receiver-bucket'
 source_bucket = 'sender-bucket'

 # Adding all the file names in the S3 bucket in an
array
 keys = []
 if 'Contents' in response:
 for item in response['Contents']:
 keys.append(item['Key']);

 # Add all the files in the bucket into the receiver
bucket
 for key in keys:
 path = source_bucket + '/' + key
 print(key)
 s3.Object(destination_bucket,
key).copy_from(CopySource=path)

 Exception as e:
 print(e)
print('Error getting object {} from bucket {}. Make sure they
exist and your bucket is in the same region as this
function.'.format(key, bucket))
raise e

Now, when you run the Lambda function, you can see the same file in the17.
receiver-bucket bucket:

Setting Up Serverless Architectures Chapter 3

[61]

SNS trigger
The SNS notification service can be used across multiple use cases, one of which involves
triggering Lambda functions. The SNS trigger is popularly used as an interface between the
AWS CloudWatch service and Lambda.

So, in this section, we will do the following:

Create an SNS topic1.
Create a CloudWatch alarm for our receiver-bucket bucket to monitor the2.
number of objects in the bucket
Once the objects count reaches 5, the alarm will be set to ALERT and the3.
corresponding notification will be sent to the SNS topic that we have just created
This SNS topic will then trigger a Lambda function, which prints out a Hello4.
World message for us

This will help you understand how to monitor different AWS services and set up alarms for
some thresholds for those metrics. And depending on whether the service's metrics have hit
that threshold or not, the Lambda function will get triggered.

The process flow for this is as follows:

SNS topics can be created from the SNS dashboard. By clicking on the Create1.
topic option, you will be redirected to the topic creation dashboard of SNS. The
SNS dashboard of AWS looks like this:

Setting Up Serverless Architectures Chapter 3

[62]

The SNS topic creation wizard in the next step looks like this:

In this creation wizard, you can name the SNS topic that you are creating, and add
any meta information you want to.

Once the topic is created, you can view it in the Topics menu, which is on the left2.
of your SNS dashboard. The button looks like this:

Setting Up Serverless Architectures Chapter 3

[63]

Upon clicking the Topics tab, a list of topics will be displayed, as shown in
the following screenshot:

Now that we have successfully created an SNS topic, we shall create a3.
CloudWatch alarm to monitor our S3 bucket for files. The AWS CloudWatch
dashboard looks something like this:

Setting Up Serverless Architectures Chapter 3

[64]

Now, we can go to the Alarms page by clicking the Alarms button in the list on4.
the left of the dashboard. The AWS Alarms page of looks like this:

Setting Up Serverless Architectures Chapter 3

[65]

Next, click on Create Alarm to create an alarm. This will open an alarm creation5.
wizard with multiple options. The wizard looks like this, depending on the
services running in your AWS ecosystem:

Setting Up Serverless Architectures Chapter 3

[66]

As we intend to create an alarm for our S3 bucket, we can go to the S36.
Metrics tab and ignore the rest of the available metrics. If you click on the
Storage Metrics option in the S3 Metrics category, you will be re-directed to
another alarm creation wizard that looks like the following, depending on the
number of buckets you have in your S3:

Setting Up Serverless Architectures Chapter 3

[67]

If you observe the options in the Metric Name column, you will see two options7.
available for each bucket: NumberOfObjects and BucketSizeBytes. They are
self-explanatory and we will only need the NumberOfObjects option for the
receiver-bucket bucket. So, select that option and click Next:

Setting Up Serverless Architectures Chapter 3

[68]

This will take you to the alarm definition wizard, where you need to specify the
details of the SNS topic and the threshold for the alarm. The wizard looks like
this:

Setting Up Serverless Architectures Chapter 3

[69]

Add in the details for the threshold and the name of the alarm. The threshold is8.
five files, which means that the alarm will be triggered as soon as the number of
files in the corresponding bucket (receiver-bucket in our case) reaches a total
of five. The wizard looks like this:

In the Actions option, we can configure the alarm to send the notification to the9.
SNS topic that we have just created. You can select the topic from the drop-down
list, as follows:

Setting Up Serverless Architectures Chapter 3

[70]

Once we have configured the SNS topic, we can click on the blue Create10.
Alarm button at the bottom. This will create the alarm that is linked to the SNS
topic as a notification pipeline. The created alarm will look like this on the
dashboard:

Setting Up Serverless Architectures Chapter 3

[71]

Now, we can move on to building the Lambda function for the task. For this11.
particular task, use the sns-message-python blueprint while creating our
Lambda function:

Setting Up Serverless Architectures Chapter 3

[72]

In the previous step, when you have selected the blueprint, you will be asked to11.
enter some meta information regarding your Lambda function, just like we did
previously while creating Lambda functions. In the same wizard, you will also be
asked to mention the name of the SNS topic. You can specify it here:

Setting Up Serverless Architectures Chapter 3

[73]

Now that we have selected all the options for the Lambda function correctly, we12.
can now go on to the code. The desired code will look like this:

The preceding code will display a Hello World message whenever the Lambda
function gets triggered. This we have completed the setup for this task.

To test the preceding setup, you can simply upload more than five files to your13.
receiver-bucket bucket and check for Lambda function's execution.

Setting Up Serverless Architectures Chapter 3

[74]

SQS trigger
The AWS Simple Queue Service (SQS) is the AWS queue service. This service is similar to
the queuing mechanisms that are used generally in software engineering. This enables us to
add, store, and remove messages inside the queue.

We will learn how to trigger a Lambda function, depending on the number of messages in a
SQS queue. This task will help you understand how serverless batch data architectures can
be built and how to build one yourself.

We will do this by monitoring our SQS queue with a CloudWatch alarm and relaying the
information to Lambda via an SNS topic, just like we did in the previous task.

So, in this section, we will do the following:

Create an SQS queue1.
Create an SNS topic2.
Create a CloudWatch alarm for our SQS queue to monitor the number of3.
messages in the queue
Once the messages count reaches 5, the alarm will be set to ALERT and the4.
corresponding notification will be sent to the SNS topic we have just created
This SNS topic will then trigger a Lambda function, which prints out a Hello5.
World message for us

This will help you understand how to monitor queues and build efficient serverless data
architectures that are batched, instead of in real time.

Setting Up Serverless Architectures Chapter 3

[75]

 The process flow for this is as follows:

We will start by creating an AWS SQS queue. We need to go to the SQS1.
dashboard of our AWS account. The dashboard looks like this:

Click on the Get Started Now button to create an SQS queue. It will redirect you2.
to the queue creation wizard, where you need to enter details such as the name,
type of queue, and so on. The queue creation wizard looks like this:

Setting Up Serverless Architectures Chapter 3

[76]

You can enter the name of the queue in Queue Name. In the What type of3.
queue do you need? option, select the Standard Queue option. In the options at
the bottom, select the blue Quick-Create Queue option:

Setting Up Serverless Architectures Chapter 3

[77]

The Configure Queue option is for advanced settings. It is not necessary to tweak
those settings for this task. This is what the advanced settings look like:

Once you have created the queue, you will be taken to the SQS page, where all5.
the queues that you have created are listed similarly to the SNS list. This page
looks like this:

Setting Up Serverless Architectures Chapter 3

[78]

As we have already created an SNS topic in the previous task, we will use the6.
same topic for this purpose. If you haven't created an SNS topic, you can refer to
the previous task for instructions on how to create one. The list of SNS topics
looks like this:

Setting Up Serverless Architectures Chapter 3

[79]

Now, we will go to the CloudWatch dashboard to create an alarm to monitor our7.
SQS queue and send a notification to Lambda via the SNS topic that we have
already created. We can now see the SQS queue metrics in the alarm creation
wizard:

By clicking on the Queue Metrics option under SQS Metrics, we will be taken to8.
the page where all queue metrics are listed, and we need to select one of them for
our alarm:

Setting Up Serverless Architectures Chapter 3

[80]

Here, we are interested in the ApproximateNumberOfMessagesVisible metric,9.
which gives the number of messages in the queue. It says Approximate, as SQS is
a distributed queue and the number of messages can only be determined
stochastically.

Setting Up Serverless Architectures Chapter 3

[81]

In the next page, after selecting the10.
ApproximateNumberOfMessagesVisible metric from the list, the necessary
settings can be configured as we did for the S3 Metrics in the previous task. The
page should look like this:

Setting Up Serverless Architectures Chapter 3

[82]

In the Actions section, configure the SNS topic to which we want to send our11.
notification. This step is also similar to how we configured the SNS topic in the
previous task:

Setting Up Serverless Architectures Chapter 3

[83]

Once you are satisfied with the metadata and the settings you have configured12.
for the alarm, you can click the blue Create Alarm button on the bottom-right
side of the screen. That will successfully create an alarm that monitors your SQS
queue and sends a notification to the SNS topic that you have configured:

We can use the Lambda function that we created in the previous task. Make sure13.
the trigger is the SNS topic that we are using to configure the notification system
of the alarm:

Setting Up Serverless Architectures Chapter 3

[84]

The Lambda function code for this task is as follows:14.

from __future__ import print_function
import json
print('Loading function')
def lambda_handler(event, context):
 #print("Received event: " + json.dumps(event, indent=2))
 message = event['Records'][0]['Sns']['Message']
 print("From SNS: " + message)
 print('Hello World')
 return message

CloudWatch trigger
CloudWatch is the logging and monitoring service for AWS, where logs from most services
get stored and monitored. In this section, we will learn how CloudWatch trigger works,
how CloudWatch querying works in practice, configuring this in the Lambda function, and
also how to make use of this knowledge to build a Lambda function.

So, in this section, we will do the following:

Create a CloudWatch log1.
Briefly understand how a CloudWatch log works2.
Create a Lambda function that gets triggered by the CloudWatch trigger3.

This will help you understand and build resilient and stable serverless architectures.

Setting Up Serverless Architectures Chapter 3

[85]

 The process flow for this is as follows:

To create a CloudWatch Logs group, click on the Logs option to the left of the1.
CloudWatch console:

Once you are on the AWS CloudWatch Logs page, you will see a list of log2.
groups that are already present. The CloudWatch Logs page looks something like
this:

Setting Up Serverless Architectures Chapter 3

[86]

Let's go ahead and create a new CloudWatch log. You can see the option to create3.
a new log group from the Actions drop-down menu at the top:

In the next step, you will be asked to name the log group that you are creating.4.
Go ahead and enter the relevant information and click Create log group:

Setting Up Serverless Architectures Chapter 3

[87]

So, now we have a new log group listed in the list of log groups in our5.
CloudWatch console:

Once the log group has been created, we can now start working on our Lambda6.
function. So, let's move on to the Lambda console and start creating a new
function.
From the blueprints, choose the cloudwatch-logs-process-data blueprint. The7.
description reads: A real-time consumer of log events ingested by an Amazon
CloudWatch Logs log group:

Setting Up Serverless Architectures Chapter 3

[88]

After selecting the corresponding blueprint option, you will be redirected to the8.
Lambda creation wizard, as usual:

Setting Up Serverless Architectures Chapter 3

[89]

Just as we did in the previous task, we will also enter relevant information about9.
the log name and other details in the cloudwatch-logs pane of the Lambda
creation panel:

After clicking Create function, we will be directed to a Triggers page with the10.
success message.

Setting Up Serverless Architectures Chapter 3

[90]

So, now we write the Lambda function code to identify the log group and11.
print Hello World message:

Setting Up Serverless Architectures Chapter 3

[91]

We have now successfully completed another task where we understood how to12.
trigger a Lambda function via AWS CloudWatch Logs. The Lambda function
code for this task is as follows:

 import boto3
 import logging
 import json
 logger = logging.getLogger()
 logger.setLevel(logging.INFO)
 def lambda_handler(event, context):
 #capturing the CloudWatch log data
 LogEvent = str(event['awslogs']['data'])
 #converting the log data from JSON into a dictionary
 cleanEvent = json.loads(LogEvent)
 print 'Hello World'
 print cleanEvent['logEvents']

Summary
In this chapter, we have learned a great deal about how various Lambda triggers work, and
how to configure them, set up the triggers, and write Lambda function code to handle the
data from them.

In the first task, we learned how S3 events work and how to understand and receive events
from the S3 service to AWS Lambda. We have understood how to monitor S3 buckets for
file details via their metrics in CloudWatch and then send that notification via AWS SNS to
a Lambda functions.

We have also learned how to create SNS topics and how to use them as an intermediate
route between several metrics of AWS services from CloudWatch to AWS Lambda.

We have learned briefly about how AWS CloudWatch works. We understood what the
metrics of various AWS services, such as S3, SQS, and CloudWatch, look like. We also
learned how to set thresholds for CloudWatch Alarms, and how to connect those alarms to
notification services, such as AWS SNS.

Setting Up Serverless Architectures Chapter 3

[92]

We learned how AWS CloudWatch Logs work and how to connect and use the
CloudWatch trigger in Lambda so it's triggered whenever a new log event is
added/received. Overall, we have successfully created new AWS services, such as SQS,
CloudWatch Logs, SNS, and S3 buckets in this chapter, and successfully built and deployed
three serverless tasks/pipelines.

In the next chapter, we will learn how to build serverless APIs, on which we will perform
some tasks just like we did in this chapter, and get a hands-on understanding of how APIs
work and, most importantly, how serverless APIs work.

4
Deploying Serverless APIs

So far, we have come a long way in our journey of learning about serverless applications
and building serverless engineering. We have learned what the serverless paradigm
actually is, how the AWS Lambda function works, understanding the internals of AWS
Lambda, along with a detailed understanding of how several triggers work. We have also
done several mini projects around experimenting with triggers and deploying them as end-
to-end serverless pipelines.

In this chapter, you will be learning how to build efficient and scalable serverless APIs,
using the AWS Lambda and AWS API Gateway services. We will start with understanding
how the API Gateway works, instead of diving directly to building the serverless API. After
that, we will understand how API Gateway and AWS Lambda integrate with each other.
And finally, we will be creating and deploying a fully functional serverless API, as part of
your learning from this chapter.

This chapter covers the following topics:

API methods and resources
Setting up integration
Deploying the Lambda function for API execution
Handling authentication and user controls

Deploying Serverless APIs Chapter 4

[94]

API methods and resources
In this section, we will be learning about the API service of AWS, which is the API
Gateway, and understanding the components and settings available in the console for the
user who is creating APIs. We will go through all of the components and understand the
API Gateway better. The steps to create the serverless APIs are as follows:

We will start by opening the API Gateway console, which looks like this:1.

In the API Gateway console, click on the Get Started button to start creating an2.
API. It will take you to an API creation wizard with a popup saying Create
Example API:

Deploying Serverless APIs Chapter 4

[95]

Once you click on the OK button, you will be redirected to a page where the3.
Example API is shown, from which you can get an idea of what an API response
looks like:

Deploying Serverless APIs Chapter 4

[96]

The API we are building in this example is for a pet store and for maintaining the
pets inside the store. By going through the API, you will see what the bits and
pieces of an API looks like. The API looks like this:

Once you click on the Import button at the end, you will be redirected to the4.
PetStore (b7exp0d681) API page that we have just created. The API page with all
the components looks like this:

Deploying Serverless APIs Chapter 4

[97]

The resources in this API are the GET and POST resources, where you can add5.
pets and view the pets, which are available as a list. The list of resources from the
API we have created is as follows:

By clicking on the first GET resource, we can see a detailed execution flow from6.
the client to the endpoint and back to the client. The execution flow of the
resource looks like this:

Deploying Serverless APIs Chapter 4

[98]

Now, if we click on the POST resource, we will find a similar model execution7.
flow for the POST resource. It looks very similar to that of the GET resource,
however, here the API endpoint is mentioned as a URL, as we are trying to
retrieve the result from it. The execution model looks as follows:

In the API Gateway, there is something called Stages, which can be used as
versioning models for an API. Some common names for Stages in practice
are test, development, and production. The Stages menu looks like this:

Deploying Serverless APIs Chapter 4

[99]

When you click on the Create option, it will open a creation wizard for the stage.7.
This looks as follows:

Deploying Serverless APIs Chapter 4

[100]

You can select any name for the Stage name value, and add the Stage8.
description value according to the name you have assigned and the purpose you
have in mind for this stage. Before that, you need to deploy the API that you have
created. This can be selected in the Actions drop-down menu as the Deploy API
button, as follows:

In the next menu, you can choose the Stage name and other details, before finally9.
clicking on the Deploy button, which will deploy your API with that particular
stage. This can be seen as follows:

Deploying Serverless APIs Chapter 4

[101]

The deployed stage would look as follows:

Setting up integration
As we now understand how the AWS API Gateway service works at a basic level, we will
move on to use that knowledge for building an end-to-end project which involves
deploying a completely serverless API.

Deploying Serverless APIs Chapter 4

[102]

In this section, we will be building and deploying a completely serverless API function from
scratch, along with learning the internals and other implementation details of the AWS
Lambda—AWS API Gateway integrations. We will be building the serverless API step-by-
step. So, follow along with the steps in this order. The procedure is as follows:

Firstly, we will start by creating a new API. This can be done via the Lambda1.
console which looks like this:

Once you have clicked on the +Create API button, you will be redirected to the2.
API creation wizard, where you will be asked to enter the name and description
of the API you are intending to build. For now, I have entered the name as
TestLambdaAPI. However, you are free to add whatever name and description
you would like to enter. The API creation console looks like this:

Deploying Serverless APIs Chapter 4

[103]

Once you click on the Create API button, you will be redirected to the page of the3.
API you have created. The API page would look similar to this:

Now that we have successfully created an API, we will now go ahead and create4.
resources in the API. You can do that by clicking on the Create Resource option
in the Actions drop-down menu:

Deploying Serverless APIs Chapter 4

[104]

This would open up a resource creation wizard where you can add the name and5.
resource path of the API resource which we are intending to build. After creating
the resource, click on the Create Resource button for your settings for the API
resource to be created accordingly. For the sake of this tutorial, I have named
it LambdaAPI. However, you can give it any name you want. The API creation
wizard looks like this:

The resource that you have just created is now live in the API console; you can see
it under the Resources section:

You can create versions of a resource or even just a resource under a resource.6.
Let's go ahead and create one. For this, you need to click on the resource that you
have already created. Then, click on the Create Resource option in the drop-
down menu in the Actions menu:

Deploying Serverless APIs Chapter 4

[105]

This would open up a similar resource creation wizard under the resource which7.
we have already created. You can name that resource as version1 or just as v1
which is a regular software practice. I have named it v1. However, you can name
it whatever you want to:

Deploying Serverless APIs Chapter 4

[106]

Now, we have a resource named v1 under the already existing resource,
/lambdaapi. We can see this under our Resources section. So, now the resources
hierarchy of our API looks like this:

We will be creating a serverless API for getting and querying the list of pets in a8.
pet store. So, the following steps will be aligned accordingly. The API should
return the name of the pets. So, we will have a new resource for pets for that
purpose. We will be creating a resource for this under the /v1 resource:

Deploying Serverless APIs Chapter 4

[107]

The resulting hierarchical structure for our API looks like this, after adding9.
the /pets resource under the /v1 resource:

Now, we will add a custom resource which enables us to query the API. By10.
custom, we mean that any string can be added to the resource when sending a
request to this API, and the API would send back a request after checking and
querying for that string via a Lambda code. The custom resources can be
differentiated from the normal ones, as they can be created with curly braces. The
following screenshot will help you understand how to create them:

Deploying Serverless APIs Chapter 4

[108]

After clicking on the Create Resource button, the new custom child resource11.
for /pets will be created. The hierarchy of the resources is now as follows:

The overall structure of the API looks like this, as specified in the top-right part of12.
the following screenshot:

Now, we will add methods to this custom resource. As we will only be querying13.
the list of pets, we will only add the GET method. This can be done by clicking on
the {type} resource and clicking on Create Method in the drop-
down Actions menu in the top panel:

Deploying Serverless APIs Chapter 4

[109]

This would create a small drop-down style menu under the {type} resource14.
where you can select a method from the available methods:

Deploying Serverless APIs Chapter 4

[110]

We need to select the GET option from the available options. This would look as15.
follows:

After selecting the GET option and clicking on the small tick button beside it, we16.
will have created the GET method under our {type} resource. The hierarchy now
looks like this:

Deploying Serverless APIs Chapter 4

[111]

Deploying the Lambda function for API
execution
In this section, we will have a look at the steps to deploy the Lambda function:

The details of the GET method can also be seen on the right-hand side of the API1.
console, when you click on that method. The details look as follows:

Deploying Serverless APIs Chapter 4

[112]

In the GET method console, click on the Lambda Function option. Select any one2.
region depending on your preference. I have chosen us-east-1 as the region as
shown in the following screenshot:

As expected, it says we do not have a Lambda function in that region. So, we3.
need to go ahead and create one. Click on the Create a Lambda Function link.
This will take you to the Lambda creation console which we are already
comfortable with:

Deploying Serverless APIs Chapter 4

[113]

From here, choose the keyword : hello-world-python blueprint from the list of4.
blueprints:

Deploying Serverless APIs Chapter 4

[114]

In the next console, choose the basic information for the Lambda function as we5.
have done in the previous chapters:

After adding the relevant details, click on the orange Create function button.6.
That will take you to the page of the Lambda function you have just created. The
code can be edited from there onwards:

Deploying Serverless APIs Chapter 4

[115]

In the function's code, use this code instead of the one which is provided along7.
with the blueprint:

We are now done with tweaking the function code. Now, you can go ahead and8.
save the function:

Deploying Serverless APIs Chapter 4

[116]

Now, head back to the API Gateway console to the GET method page. Here,9.
under the Lambda functions in the us-east-1 region, I start getting the Lambda
function which I have just created (serverless-api) as an option:

On clicking Save, you will see a popup asking you to confirm that you are giving10.
API Gateway permission to invoke your Lambda function, you can acknowledge
it by clicking on OK:

Deploying Serverless APIs Chapter 4

[117]

After clicking on OK, you will be redirected to the data flow page of the11.
GET method, that looks like this:

Deploying Serverless APIs Chapter 4

[118]

Handling authentication and user controls
After deploying, next we will discuss how to handle the authentication and user controls.
The steps are as follows:

Now that we have successfully created the skeleton of our serverless API, we will1.
now work on the nitty-gritty details which are needed to make it a fully
functional API. We will start with applying the mapping templates. This can be
done in the Integration Request menu. Clicking on the Integration Request link
will take you to a console which looks like this:

Deploying Serverless APIs Chapter 4

[119]

If you scroll down a bit in the same console, you will notice the Body Mapping2.
Templates section at the end:

Clicking on the Body Mapping Templates will unfurl the options available in3.
that particular section:

Deploying Serverless APIs Chapter 4

[120]

Select the second option which says When there are no templates defined4.
(recommended). And then, click on the Add mapping template option and
add application/json, and click on the small grey tick symbol beside it:

After clicking the small grey tick symbol beside it, the Body Mapping Templates5.
section space will look like this:

Deploying Serverless APIs Chapter 4

[121]

Now, in the template textbox, add the following code and click the Save button6.
underneath the text box:

Deploying Serverless APIs Chapter 4

[122]

So, after all these steps, the resulting Body Mapping Templates section will look7.
like this:

Deploying Serverless APIs Chapter 4

[123]

Now, going back to the Method Execution page, we can see the TEST option on8.
the left with a lightning bolt symbol beneath it:

Deploying Serverless APIs Chapter 4

[124]

Clicking on the TEST button on the left-side in the Client section and above the9.
thunderbolt option will take you to a page where you can test the API that you've
just created:

Deploying Serverless APIs Chapter 4

[125]

Now, let's type Exotic in the textbox below {type} and click on the Test button at10.
the bottom. If everything goes right, we should see the list of all the exotic pets
we have entered in the function code of our Lambda function:

And rightly so, we did get the list of all of the exotic pets in the catalog. So, this11.
brings this chapter to an end, where you have learned how to build a fully
fledged serverless API from scratch, including how to deploy it.

Deploying Serverless APIs Chapter 4

[126]

In addition, if you want to add additional security settings, such as12.
Authorizations and API Key Required, you can do it in the Method Request
menu:

Summary
In this chapter, we have learned how to build a completely serverless API from scratch. We
have also learned how to add more resources and methods for the API, as well as how to
deploy it successfully to multiple stages of development and how to add additional security
settings such as authorization and API keys for authentication purposes.

We then learned how to associate a Lambda function with our API Gateway's API service
for handling the computational tasks of our API.

In the next chapter, we will be learning about logging and monitoring serverless
applications. In that chapter, we will learn about the logging and monitoring services of
AWS such as CloudWatch Metrics, CloudWatch Logs, and CloudWatch Dashboards in
detail, and try to set them up for our serverless applications. We will also learn how to
create a logging and monitoring pipeline from AWS Lambda to these monitoring tools
using some AWS services.

5
Logging and Monitoring

We have learned about the concepts of serverless architectures and understood the basics
and the internals of AWS's serverless service, AWS Lambda. We have also created some
example serverless projects to understand the concepts better. During the course of our
learning, we have also learned the basics of several other AWS services, such as alarms,
SNS, SQS, S3 buckets, and CloudWatch.

In this chapter, we will learn about how to do the logging and monitoring for the serverless
systems that we are building. Logging and monitoring software code and systems are very
important, as they helps us with the telemetry and disaster recovery. Logging is a process
where we store the logs emitted by our code or by our architecture as a whole. Monitoring
is a process where we closely monitor the activities, status, and health of the components
and processes in our code or architecture.

So, you will be learning how to set up and understand the monitoring suite of AWS
Lambda, which is closely integrated with the monitoring service of AWS, the CloudWatch
Dashboards. We will also learn about the logging service of AWS, the CloudWatch Logs
service. Finally, we will also learn about and understand the distributed tracing and
monitoring service of AWS, the CloudTrail service.

This chapter covers the following topics:

Understanding CloudWatch
Understanding CloudTrail
Lambda's metrics in CloudWatch
Lambda's logs in CloudWatch
Logging statements in Lambda

Logging and Monitoring Chapter 5

[128]

Understanding CloudWatch
As mentioned earlier, CloudWatch is the logging and monitoring service of AWS. We have
already looked at and learned about the CloudWatch Alarms, which are a sub-feature of
CloudWatch. We will now learn about the graphing suite of the service. Almost every
service in the AWS environment has a way to send it's logs and metrics to CloudWatch for
logging and monitoring purposes. Each service might have several metrics which can be
monitored, depending on the function.

Similarly, AWS Lambda also has some metrics, such as the invocation count, the
invocation's running time, and so on, which it sends to CloudWatch. It is also helpful to
note that the developers can also send custom metrics to CloudWatch. So in the following
steps, we shall be learning about the different parts and functions of AWS CloudWatch
corresponding to AWS Lambda:

Firstly, let us see what the CloudWatch console looks like and also get a feel for it1.
by navigating around the console. Browse to
console.aws.amazon.com/cloudwatch/:

As we can see, there is a lot of information in the CloudWatch console. So, we2.
shall now try to understand each component one after the other. In the left side,
we can see a list of options, which includes Dashboards, Alarms, Billing, and so
on. We shall try to understand all of them and their functionality as part of
understanding the CloudWatch console.

https://signin.aws.amazon.com/signin?redirect_uri=https%3A%2F%2Fconsole.aws.amazon.com%2Fcloudwatch%2F%3Fstate%3DhashArgs%2523%26isauthcode%3Dtrue&client_id=arn%3Aaws%3Aiam%3A%3A015428540659%3Auser%2Fcloudwatch&forceMobileApp=0

Logging and Monitoring Chapter 5

[129]

A dashboard here is a panel of CloudWatch Metrics that the user can configure.3.
For example, a user might want to have a particular set of server (EC2) metrics at
a single place to be able to monitor them better. This is where AWS CloudWatch
Dashboards come into play. When you click on the Dashboards option on the
left, you can see the Dashboards console, which looks like this:

Let us go ahead and create a new dashboard by clicking the blue Create4.
dashboard button on the top left-hand side of the console. The following box
appears:

Logging and Monitoring Chapter 5

[130]

This will take you to the next step, where you will be asked to select a widget5.
type for the dashboard. There are four types of widgets which are currently
available. The widget selection screen looks like this:

For the sake of this tutorial, I am choosing the Line style widget. You can choose6.
whatever widget would fit your graphing style and the monitoring you need to
do. Once you select a widget style and click the blue Configure button, you will
be redirected to a wizard where you will be asked to add a metric as shown in the
following screenshot:

Logging and Monitoring Chapter 5

[131]

Select one of the available metrics at the bottom and it will be added to the7.
widget. Once you are done with selecting the metrics, click on the blue Create
widget button in the lower-right part of the page as shown in the following
screenshot:

Logging and Monitoring Chapter 5

[132]

Now, you can see the dashboard that you have just created in8.
the Dashboards section:

We have successfully learned and created an AWS CloudWatch Dashboard. We9.
will now move on to learning about CloudWatch Events. We have already
learned about CloudWatch Alarms in the previous chapters, looking at both their
functionality and how to create and work with them.
Click on the Events link in the CloudWatch menu on the left. You will be10.
redirected to the page of CloudWatch Events, as shown in the following
screenshot:

Logging and Monitoring Chapter 5

[133]

Once you click on the blue Create rule button, you will be redirected to the11.
Events creation wizard, which looks like this:

There can be two types of events, namely Event Pattern and Schedule, each of12.
which have different purposes. Here we will only learn about the Schedule type,
as it comes in handy for scheduling Lambda functions:

Logging and Monitoring Chapter 5

[134]

The rate can be either set in terms of Minutes, Hours, or Days, or can be set as a13.
cron expression, whichever way you are comfortable with. Now, the target needs
to be selected. The target can be any valid Lambda function, as shown in the
following drop-down menu:

Once you have selected the function, you can click on the blue Configure details14.
at the bottom. It will take you to the Configure rule details page as shown in the
following screenshot:

Logging and Monitoring Chapter 5

[135]

Once you enter the name and the description of the rule that you want to create,15.
you can click on the blue Create rule button at the bottom. This will successfully
create an event, and the same will be reflected in your CloudWatch console:

We have successfully added a cron event for a Lambda function which means that
Lambda will be invoked at regular intervals, as specified by the user in the
settings of the event.

Now, we shall try to understand the Logs feature of AWS CloudWatch. This is16.
where the Lambda functions store their logs. You can click on the Logs link in the
menu on the left-hand side to access the console of CloudWatch Logs:

Logging and Monitoring Chapter 5

[136]

We can see the complete list of logs for all of the Lambda functions we have ever17.
created throughout the course of the book. When you click on a log group, you
can find more details about it, and also options for customization. Each log
stream is an invocation of the Lambda function that the log is associated with:

You can also make use of the additional functionality provided by CloudWatch18.
for handling the logs data, which can be seen in the drop-down Actions menu
in Log Groups:

Finally, we will wrap up by exploring and learning about the CloudWatch19.
Metrics. The metrics console can be accessed by clicking on the Metrics option on
the left-hand side of the CloudWatch console:

Logging and Monitoring Chapter 5

[137]

You can select any option in the menu at the bottom for graphing the metrics. For20.
the purpose of this tutorial, I have added a Lambda metric, which is the number
of errors in the function, serverless-api:

Logging and Monitoring Chapter 5

[138]

Understanding CloudTrail
CloudTrail is another monitoring service of AWS where you can look at all of the events
and trails that have happened in your AWS account. This service is a bit more detailed than
the CloudWatch service in how it records and stores the events and trails.

So, we shall explore and learn about this service in the following steps:

The AWS CloudTrail's dashboard can be accessed at1.
console.aws.amazon.com/cloudtrail/:

The list of events in your AWS account can be seen on the left-hand side of the2.
CloudTrail menu when you click on the Event history button. The Event history
page looks like this:

https://signin.aws.amazon.com/signin?redirect_uri=https%3A%2F%2Fconsole.aws.amazon.com%2Fcloudtrail%2Fhome%3Fstate%3DhashArgs%2523%26isauthcode%3Dtrue&client_id=arn%3Aaws%3Aiam%3A%3A015428540659%3Auser%2Fcloudtrail&forceMobileApp=0

Logging and Monitoring Chapter 5

[139]

The third functionality of CloudTrail is the trails. The user can set up trails for3.
their AWS services, such as Lambda. The trails that have been set up can be
found on the Trails dashboard. This can be accessed by going to the Trails
console by clicking on the Trails option in the menu on the left-hand side:

Logging and Monitoring Chapter 5

[140]

Now, let us understand how to create a trail in the CloudTrail dashboard. You4.
can go to the main dashboard of CloudTrail and click on the blue Create trail
button. This will take you to the trail creation wizard:

You can enter the details of your trail here. You can leave the default options as5.
they are for the Apply trail to all regions and the Management events options:

Logging and Monitoring Chapter 5

[141]

Now, moving on to the next setting, select the Lambda option and click on the6.
Log all current and future functions in the options list. This will ensure that all
of our Lambda functions are logged properly with CloudTrail:

Now, in the final Storage location option, select an S3 bucket for storing the7.
CloudTrail logs. This can be an already existing bucket or you can also ask
CloudTrail to create a new bucket for this purpose. I am using an existing bucket:

Logging and Monitoring Chapter 5

[142]

After all of the details and settings have been configured accordingly, you can8.
click on the blue Create trail button to create the trail. Now, you see the trail you
have just created in your CloudTrail dashboard as shown in the following
screenshot:

Now, when you click on the trail that you have just created, you can see all of the9.
details with which it has been configured as shown in the following screenshot:

Logging and Monitoring Chapter 5

[143]

You can also notice a very interesting option that enables you to configure10.
CloudWatch Logs along with SNS to notify you of any specific activities, for
example when there is an error in a Lambda function:

And finally, you can also add tags to the trail, just like you can with the rest of11.
your AWS services:

Logging and Monitoring Chapter 5

[144]

Additionally, let us understand how to configure CloudWatch Logs for our trail.12.
So, for this you need to click on the blue Configure button in the CloudWatch
Logs section above the Tags section:

When you click Continue, it takes you to the creation wizard where you need to13.
configure the permissions accordingly with your IAM role settings. For the
purpose of this tutorial, I have selected the Create a new IAM Role option as
shown in the following screenshot:

Logging and Monitoring Chapter 5

[145]

After you have finished configuring the IAM role settings, you can click on the14.
blue Allow button at the bottom. After a couple of seconds of validation, the
CloudWatch Logs get configured, which you can see in the same CloudWatch
Logs section here:

Lambda’s metrics in CloudWatch
As we have learned and understood how the CloudWatch and the CloudTrail services
work with respect to logging and monitoring, we shall move on to try and implement them
for our Lambda function(s). In this section, you will learn about the types of metrics that
Lambda possesses, which are monitored by CloudWatch, and how to create a dashboard
with all those metrics.

Similar to previous sections in this chapter and book, we shall try and understand the
concepts in the form of the following steps:

When you navigate over to your AWS Lambda console, you will see the Lambda1.
function which you have already created, in the list of available functions:

Logging and Monitoring Chapter 5

[146]

When you click on the function, you will see two available options on the top:2.
Configuration and Monitoring. Navigate to the Monitoring section. You will see
a dashboard of metrics, which contains the following:

Invocations
Duration
Errors
Throttles
Iterator age
DLQ errors

Invocations and duration

Logging and Monitoring Chapter 5

[147]

Errors and Throttles

Iterator age and DLQ errors

Logging and Monitoring Chapter 5

[148]

Let us understand each of them in detail. The first metric is the Invocations3.
metric, which has the time on the x axis and the number of invocations of the
Lambda function on the y axis. This metric helps us understand when and how
many times our Lambda function has been invocated:

When you click Jump to Logs, it takes you to the CloudWatch Logs console of the
Lambda invocations, which looks like this:

Logging and Monitoring Chapter 5

[149]

And when you click on the Jump to Metrics option, it will take you to the
CloudWatch Metrics dashboard of that particular metric, which gives you a much
more customized and granular graph of the same metric, which looks like this:

Logging and Monitoring Chapter 5

[150]

The second metric in the Lambda's monitoring dashboard is the Duration metric,4.
which tells you the duration of each invocation of our Lambda function. It also
has time as the X axis, and the duration time in the Y axis in the unit of
milliseconds. It also tells you the maximum, average, and the minimum duration
of your Lambda function over a period of time:

Again, clicking on the Jump to Logs button will take you to the same page as that5.
of the previous metric. Clicking on the Jump to Metrics button will take you to
the CloudWatch metric page of the Duration metric, which looks like this:

Logging and Monitoring Chapter 5

[151]

The third metric is the Errors metric, which helps us keep a look out for errors in6.
our invocations of the Lambda function. The Y axis is the number of errors while
the X axis is the timeline:

Logging and Monitoring Chapter 5

[152]

The CloudWatch Dashboard of the same metric can be seen by clicking on the7.
Jump to Metrics link:

The fourth metric is Throttles. This metric counts the number of times your8.
Lambda functions have been throttled, which means the number of times the
concurrent executions of the functions have breached the set limit of 1,000 per
region. We won't encounter this metric very frequently as the Lambda functions
which we build as examples in this book stay well within the concurrency limits:

Logging and Monitoring Chapter 5

[153]

By clicking on the Jump to Metrics link, we can also see this metric in our9.
CloudWatch Metrics dashboard:

The fifth metric is the iterator age. This is only valid for functions which are10.
triggered by the DynamoDB stream or the Kinesis stream. It gives the age of the
last record which is processed by the function:

Logging and Monitoring Chapter 5

[154]

The Jump to Metrics link takes you to the CloudWatch Metrics dashboard of this
metric:

The sixth and the last metric is the DLQ errors metric. This gives the number of11.
errors that occurred while sending messages (failed event payloads) to a dead
letter queue. Most often the errors would be caused due to faulty permission
configurations and timeouts:

Logging and Monitoring Chapter 5

[155]

The Jump to Metrics link will take you to the CloudWatch Metrics dashboard of
the same metric:

Lambda's logs in CloudWatch
So far, we have learned about and understood the metrics of AWS Lambda in great detail.
Now, we will move on to understanding the logs of the Lambda functions. As always, we
will try to understand them via the following steps:

Logs for AWS Lambda functions are stored in CloudWatch's Logs service. You1.
can access the CloudWatch Logs service by going to the Logs dashboard by
clicking on the main CloudWatch dashboard.

Logging and Monitoring Chapter 5

[156]

When you click on the logs of the serverless-api, /aws/lambda/serverless-api, in2.
the list, we go to the log stream of the serverless API, which looks like this:

Logging and Monitoring Chapter 5

[157]

Each log stream here is a Lambda invocation. So, whenever your Lambda3.
function is invoked, it creates a new log stream here. If the invocation is a part of
Lambda's retry process, then the logs for that particular invocation will be written
under the most recent log stream. A single log stream can contain several details.
But firstly, let us look at what a particular log stream looks like:

Logging and Monitoring Chapter 5

[158]

Also, if you look closely, you can observe that Lambda's logs also give out4.
information about the duration of the Lambda function's invocation, the duration
for which it is billed for, and also the memory used by the function. These metrics
help in understanding our functions' performance better and for further
optimization and fine tuning:

Logging and Monitoring Chapter 5

[159]

There are several columns in CloudWatch Logs for you to select from, which are5.
not shown in the preceding screenshots. These are the available options:

Logging and Monitoring Chapter 5

[160]

So, when you select more of those, you will see them in your dashboard as
columns. These come in handy when you're doing a much more fine-grained
debugging of our Lambda functions:

Logging statements in Lambda
Logging your comments and errors clearly is always a good software practice. So, we shall
now understand how to log from inside of Lambda functions. There are broadly two ways
of logging inside Lambda functions. We shall now learn and understand them via examples
from the following steps:

The first way is to use Python's logging library. This is widely used as a1.
standard practice for logging in Python scripts. We shall edit the code we have
written previously for the serverless API and add in the logging statements in it.
The code will look like this:

Logging and Monitoring Chapter 5

[161]

The code which is in the preceding screenshot is as follows:

import logging
logger = logging.getLogger()
logger.setLevel(logging.INFO)
def lambda_handler(event, context):
 mobs = {
 "Sea": ["GoldFish", "Turtle", "Tortoise", "Dolphin", "Seal"],
 "Land": ["Labrador", "Cat", "Dalmatian", "German Shepherd",
 "Beagle", "Golden Retriever"],
 "Exotic": ["Iguana", "Rock Python"]
 }

 logger.info('got event{}'.format(event))
 logger.error('something went wrong')

 return 'Hello from Lambda!'
 #return {"type": mobs[event['type']]}

Logging and Monitoring Chapter 5

[162]

Now, when you run the Lambda function after saving, you can see a successful2.
execution statement in green color, which looks like this:

When you click on the Details option, you can see the logging statements being3.
executed clearly:

Logging and Monitoring Chapter 5

[163]

The next way of logging statements is by simply using the print statements in4.
Python. It is the most common way of printing out logging statements in Python
scripts. So, we shall add a Hello from Lambda print statement in our function
code and see if we get the logs in our Lambda execution or not:

The code for this Lambda function is as follows:

 def lambda_handler(event, context):
 mobs = {
 "Sea": ["GoldFish", "Turtle", "Tortoise", "Dolphin", "Seal"],
 "Land": ["Labrador", "Cat", "Dalmatian", "German Shepherd",
 "Beagle", "Golden Retriever"],
 "Exotic": ["Iguana", "Rock Python"]
}
print 'Hello from Lambda!'
return 1
#return {"type": mobs[event['type']]}

Logging and Monitoring Chapter 5

[164]

When we click on Test for executing the code, we should see a green color5.
message, which indicates a successful execution:

Again, just like we did previously, clicking on the Details toggle will give you the6.
complete execution logs:

Logging and Monitoring Chapter 5

[165]

We can see the Hello from Lambda message too. Out of the two available7.
logging options for our Lambda functions, it is always preferable to use the first
option which is via the Python's logging module. This is because that module
gives greater flexibility and helps you differentiate between info, error, and
debug logs.

Summary
In this chapter, we have learned about the monitoring and the logging capabilities of AWS.
We also learned about the available monitoring and logging tools inside the AWS
environment. We have also learned how to monitor our Lambda functions and how to set
up logging for our Lambda functions.

We have learned about the logging and monitoring practices that are followed by the
industry and the various ways one can log statements in Python from inside of a Lambda
function.

In the next chapter, we will learn how to scale up our serverless architectures to become
distributed and to be able to handle massive workloads while still preserving the positives
of a serverless setup.

6
Scaling Up Serverless

Architectures
So far, we have learned how to build, monitor, and log serverless functions. In this chapter,
we will be learning concepts and engineering techniques that will help scale up serverless
applications to be distributed, and that will also enable them to handle heavy workloads
with high standards of security and throughput. In this chapter, we will also use some
third-party tools, such as Ansible, to scale up our Lambda functions. We will be scaling up
our Lambda functions to spawn a distributed serverless architecture, which will involve
spawning multiple servers (or instances in the AWS environment). You therefore need to
keep that in mind while following the examples mentioned in this chapter.

This chapter assumes a working knowledge of a provisioning tool, such as Ansible, Chef,
and so on. You can quickly read up on or refresh your knowledge of these on their
respective sites, where they have quick tutorials. If not, then you can safely skip this chapter
and move on to the next.

This chapter consists of five sections, which cover all of the basics of scaling up serverless
architectures and will set you up for building bigger, complex serverless architectures:

Third-party orchestration tools
The creation and termination of servers
Security best practices
Difficulties of scaling up
Handling difficulties

Scaling Up Serverless Architectures Chapter 6

[167]

Third-party orchestration tools
In this section, we will learn and become versed in the concept of infrastructure
provisioning and orchestration. We will be exploring a couple of tools, namely Chef and
Ansible. Let's get started by following these steps:

We will begin with getting introduced to Chef. You can visit the official website1.
of Chef at https:/ ​/​www. ​chef. ​io/​chef/ ​:

Chef has a very good set of tutorials for getting your hands dirty. These are2.
organized in the form of mini 10 to 15 minute tutorials for easy consumption.
Head over to https:/ ​/ ​learn. ​chef.​io/ ​ to access them:

https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://learn.chef.io/
https://learn.chef.io/
https://learn.chef.io/
https://learn.chef.io/
https://learn.chef.io/
https://learn.chef.io/
https://learn.chef.io/
https://learn.chef.io/
https://learn.chef.io/
https://learn.chef.io/

Scaling Up Serverless Architectures Chapter 6

[168]

For getting started with infrastructure provisioning and orchestrating, you can3.
refer to the Chef documentation here: https:/ ​/ ​docs. ​chef. ​io/​. The page looks
like this:

https://docs.chef.io/
https://docs.chef.io/
https://docs.chef.io/
https://docs.chef.io/
https://docs.chef.io/
https://docs.chef.io/
https://docs.chef.io/
https://docs.chef.io/
https://docs.chef.io/
https://docs.chef.io/

Scaling Up Serverless Architectures Chapter 6

[169]

You can refer to the AWS Driver Resources page in the documentation to4.
understand how to interact with various AWS services via Chef at: https:/ ​/
docs.​chef. ​io/ ​provisioning_ ​aws.​html. The page looks like this:

You can also refer to the aws Cookbook for the same purpose, too. This resource5.
has very good documentation and APIs for interacting with several AWS
services. The URL of this documentation is https:/ ​/ ​supermarket. ​chef. ​io/
cookbooks/ ​aws. The page looks like this:

https://docs.chef.io/provisioning_aws.html
https://docs.chef.io/provisioning_aws.html
https://docs.chef.io/provisioning_aws.html
https://docs.chef.io/provisioning_aws.html
https://docs.chef.io/provisioning_aws.html
https://docs.chef.io/provisioning_aws.html
https://docs.chef.io/provisioning_aws.html
https://docs.chef.io/provisioning_aws.html
https://docs.chef.io/provisioning_aws.html
https://docs.chef.io/provisioning_aws.html
https://docs.chef.io/provisioning_aws.html
https://docs.chef.io/provisioning_aws.html
https://docs.chef.io/provisioning_aws.html
https://docs.chef.io/provisioning_aws.html
https://supermarket.chef.io/cookbooks/aws
https://supermarket.chef.io/cookbooks/aws
https://supermarket.chef.io/cookbooks/aws
https://supermarket.chef.io/cookbooks/aws
https://supermarket.chef.io/cookbooks/aws
https://supermarket.chef.io/cookbooks/aws
https://supermarket.chef.io/cookbooks/aws
https://supermarket.chef.io/cookbooks/aws
https://supermarket.chef.io/cookbooks/aws
https://supermarket.chef.io/cookbooks/aws
https://supermarket.chef.io/cookbooks/aws
https://supermarket.chef.io/cookbooks/aws

Scaling Up Serverless Architectures Chapter 6

[170]

A detailed description of the cookbook can be seen when you scroll down,6.
directly after the title of the cookbook:

Scaling Up Serverless Architectures Chapter 6

[171]

One other good tool for provisioning and orchestrating software resources is7.
Ansible. This helps software engineers write code for automating several parts of
their infrastructure via yaml scripts. Similar to the Chef environment, these scripts
are called cookbooks.
We will be using this tool for learning how to provision our infrastructure in the8.
subsequent sections. The documentation for Ansible can be found at http:/ ​/
docs.​ansible. ​com/ ​:

The product, ANSIBLE TOWER, is out of scope for this book. We will be9.
learning and be working with ANSIBLE CORE, which is the flagship product of
Ansible and its parent company, Red Hat.
Ansible has a very helpful video for helping you better understand and make10.
sense of the tool. It can be accessed when you click on the Quick Start Video link
in the documentation page:

http://docs.ansible.com/
http://docs.ansible.com/
http://docs.ansible.com/
http://docs.ansible.com/
http://docs.ansible.com/
http://docs.ansible.com/
http://docs.ansible.com/
http://docs.ansible.com/
http://docs.ansible.com/

Scaling Up Serverless Architectures Chapter 6

[172]

After watching the video, you can proceed to understand the product from the11.
documentation itself. The complete documentation of Ansible can be accessed
at: http:/ ​/​docs. ​ansible. ​com/ ​ansible/ ​latest/ ​index. ​html:

http://docs.ansible.com/ansible/latest/index.html
http://docs.ansible.com/ansible/latest/index.html
http://docs.ansible.com/ansible/latest/index.html
http://docs.ansible.com/ansible/latest/index.html
http://docs.ansible.com/ansible/latest/index.html
http://docs.ansible.com/ansible/latest/index.html
http://docs.ansible.com/ansible/latest/index.html
http://docs.ansible.com/ansible/latest/index.html
http://docs.ansible.com/ansible/latest/index.html
http://docs.ansible.com/ansible/latest/index.html
http://docs.ansible.com/ansible/latest/index.html
http://docs.ansible.com/ansible/latest/index.html
http://docs.ansible.com/ansible/latest/index.html
http://docs.ansible.com/ansible/latest/index.html
http://docs.ansible.com/ansible/latest/index.html
http://docs.ansible.com/ansible/latest/index.html
http://docs.ansible.com/ansible/latest/index.html

Scaling Up Serverless Architectures Chapter 6

[173]

The EC2 module is the one we will be using for provisioning and orchestrating12.
our AWS EC2 instances. This part of the documentation has a very clear
explanation and demonstration of starting up and terminating EC2 instances,
along with adding and mounting volumes; it also enables us to provision our
EC2 instances into our own specific Virtual Private Cloud (VPC) and/or in our
own Security Groups (SGs). The EC2 documentation screen looks like this:

Scaling Up Serverless Architectures Chapter 6

[174]

You can find this at the following URL of Ansible Core's documentation: http:/ ​/13.
docs.​ansible. ​com/ ​ansible/ ​latest/ ​ec2_​module. ​html. When you scroll down
further, you can see several examples of how to use the EC2 module of Ansible
for various tasks concerning AWS EC2 instances. Some of them can be seen as
follows:

http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html
http://docs.ansible.com/ansible/latest/ec2_module.html

Scaling Up Serverless Architectures Chapter 6

[175]

The creation and termination of servers
In this chapter, we will learn how to use some third-party tools that will help us in building
the required architecture. Like all of the sections in this chapter, the information will be
broken down into steps:

The first tool we will be learning about is Ansible. It is a provisioning and1.
orchestrating tool, that helps in automating several parts of an infrastructure.
Depending on when you are reading this book, the Ansible project's homepage
(https:/ ​/ ​www. ​ansible. ​com/ ​) will look something like this:

The installation process for Ansible is different for different operating systems.2.
The instructions for some popular operating systems are as follows:

For Ubuntu:

sudo apt-get update
sudo apt-get install software-properties-common
sudo apt-add-repository ppa:ansible/ansible
sudo apt-get update
sudo apt-get install ansible

https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/

Scaling Up Serverless Architectures Chapter 6

[176]

For Linux:

git clone https://github.com/ansible/ansible.git
cd ./ansible
make rpm
sudo rpm -Uvh ./rpm-build/ansible-*.noarch.rpm

For OS X:

sudo pip install ansible

Now, we will understand the concept of nohup. So, you don't need to have a3.
persistent SSH connection to the server for making a nohup command run,
therefore we will be using this technique for running our master–server
architecture (to know more about nohup refer to: https:/ ​/​en. ​wikipedia. ​org/
wiki/​Nohup).

Let's look at its definition on Wikipedia (from the time of writing this
book), nohup is a POSIX command to ignore the HUP (hangup) signal.
The HUP signal is, by convention, the way a terminal warns dependent
processes of logout.

We will now learn how to provision servers from Ansible, SSH into them, run a4.
simple apt-get update task in them, and terminate them. From this, you will
learn how to write Ansible scripts, as well as understand how Ansible handles
the provisioning of cloud resources. The following Ansible script will help you
understand how to provision an EC2 instance:

- hosts: localhost
 connection: local
 remote_user: test
 gather_facts: no

 environment:
 AWS_ACCESS_KEY_ID: "{{ aws_id }}"
 AWS_SECRET_ACCESS_KEY: "{{ aws_key }}"

 AWS_DEFAULT_REGION: "{{ aws_region }}"

 tasks:
- name: Provisioning EC2 instaces
 ec2:
 assign_public_ip: no
 aws_access_key: "{{ access_key }}"
 aws_secret_key: "{{ secret_key }}"

https://en.wikipedia.org/wiki/Nohup
https://en.wikipedia.org/wiki/Nohup
https://en.wikipedia.org/wiki/Nohup
https://en.wikipedia.org/wiki/Nohup
https://en.wikipedia.org/wiki/Nohup
https://en.wikipedia.org/wiki/Nohup
https://en.wikipedia.org/wiki/Nohup
https://en.wikipedia.org/wiki/Nohup
https://en.wikipedia.org/wiki/Nohup
https://en.wikipedia.org/wiki/Nohup
https://en.wikipedia.org/wiki/Nohup
https://en.wikipedia.org/wiki/Nohup

Scaling Up Serverless Architectures Chapter 6

[177]

 region: "{{ aws_region }}"
 image: "{{ image_instance }}"
 instance_type: "{{ instance_type }}"
 key_name: "{{ ssh_keyname }}"
 state: present
 group_id: "{{ security_group }}"
 vpc_subnet_id: "{{ subnet }}"
 instance_profile_name: "{{ Profile_Name }}"
 wait: true
 instance_tags:
 Name: "{{ Instance_Name }}"
 delete_on_termination: yes
 register: ec2
 ignore_errors: True

The values in the {{ }} brackets need to be filled in as per your convenience and
specifications. The preceding code will create an EC2 instance in your console and
name it, as per the specification which is given in the {{ Instance_Name
}} section.

The ansible.cfg file should include all of the details which give instructions5.
about the control path, the details regarding the forwarding agent, and also the
path to the EC2 instance key. The ansible.cfg file should look like this:

[ssh_connection]
ssh_args=-o ControlMaster=auto -o ControlPersist=60s -o
ControlPath=/tmp/ansible-ssh-%h-%p-%r -o ForwardAgent=yes

[defaults]
private_key_file=/path/to/key/key.pem

Scaling Up Serverless Architectures Chapter 6

[178]

When you execute this code using ansible-playbook -vvv < name-of-6.
playbook >.yml, you can see the EC2 instance being created in your EC2
console:

Now, we will terminate the instance which we have just created via Ansible. This7.
will also be done in an Ansible script, similar to how we provisioned the instance.
The following code does this:

 tasks:
 - name: Terminate instances that were previously launched
 connection: local
 become: false
 ec2:
 state: 'absent'
 instance_ids: '{{ ec2.instance_ids }}'
 region: '{{ aws_region }}'
 register: TerminateWorker
 ignore_errors: True

Scaling Up Serverless Architectures Chapter 6

[179]

So, now you can see the instance being terminated in the console. Note that the8.
code is the same up until the tasks, such as provisioning and terminating
instances, so you can copy and paste from the provisioning task:

So, we have successfully learned how to provision and terminate EC2 instances
via an Ansible script. We will use this knowledge for provisioning and will be
terminating EC2 instances at the same time.

Making a small change to the provisioning code in the yaml script we used9.
previously, we can provision multiple servers (EC2 instances) at the same time,
by simply adding the count parameter. The following code will provision the
number of instances mentioned in the jinja template, beside the count parameter.
In our example, it is ninstances:

- hosts: localhost
 connection: local
 remote_user: test
 gather_facts: no

 environment:
 AWS_ACCESS_KEY_ID: "{{ aws_id }}"
 AWS_SECRET_ACCESS_KEY: "{{ aws_key }}"

Scaling Up Serverless Architectures Chapter 6

[180]

 AWS_DEFAULT_REGION: "{{ aws_region }}"

 tasks:
- name: Provisioning EC2 instaces
 ec2:
 assign_public_ip: no
 aws_access_key: "{{ access_key }}"
 aws_secret_key: "{{ secret_key }}"
 region: "{{ aws_region }}"
 image: "{{ image_instance }}"
 instance_type: "{{ instance_type }}"
 key_name: "{{ ssh_keyname }}"
 count: "{{ ninstances }}"
 state: present
 group_id: "{{ security_group }}"
 vpc_subnet_id: "{{ subnet }}"
 instance_profile_name: "{{ Profile_Name }}"
 wait: true
 instance_tags:
 Name: "{{ Instance_Name }}"
 delete_on_termination: yes
 register: ec2

Now, as we have our Ansible script ready, we will now use it to start our10.
infrastructure from the Lambda function. For that, we will make use of our
knowledge of nohup.
In your Lambda function, all you need to do is to write the logic for creating a11.
server, and then do some basic installations using the library, paramiko, and
then run the Ansible script in a nohup mode, as shown here:

import paramiko
import boto3
import logging

logger = logging.getLogger(__name__)
logger.setLevel(logging.CRITICAL)
region = 'us-east-1'
image = 'ami-<>'
ubuntu_image = 'ami-<>'
keyname = '<>'

def lambda_handler(event, context):
 credentials = {<>}
 k = paramiko.RSAKey.from_private_key_file("<>")
 c = paramiko.SSHClient()
 c.set_missing_host_key_policy(paramiko.AutoAddPolicy())
 logging.critical("Creating Session")

Scaling Up Serverless Architectures Chapter 6

[181]

 session = boto3.Session(credentials['AccessKeyId'],
 credentials['SecretAccessKey'],
 aws_session_token=credentials['SessionToken'],
region_name=region)
 logging.critical("Created Session")
 logging.critical("Create Resource")
 ec2 = session.resource('ec2', region_name=region)
 logging.critical("Created Resource")
 logging.critical("Key Verification")

 key = '<>'
 k = paramiko.RSAKey.from_private_key_file(key)
 c = paramiko.SSHClient()
 c.set_missing_host_key_policy(paramiko.AutoAddPolicy())
 logging.critical("Key Verification done")
 # Generate Presigned URL for downloading EC2 key from an
S3 bucket into master
 s3client = session.client('s3')

Presigned url for downloading pem file of the server from an
S3 bucket
 url = s3client.generate_presigned_url('get_object',
Params={'Bucket': '<bucket_name>', 'Key':
'<file_name_of_key>'},
ExpiresIn=300)
 command = 'wget ' + '-O <>.pem ' + "'" + url + "'"
 logging.critical("Create Instance")
while True:
 try:
 logging.critical("Trying")
 c.connect(hostname=dns_name, username="ubuntu", pkey=k)
 except:
 logging.critical("Failed")
 continue
 break
 logging.critical("connected")

 if size == 0:
 s3client.upload_file('<>.pem', '<bucket_name>',
'<>.pem')
 else:
 pass
 set_key = credentials['AccessKeyId']
 set_secret = credentials['SecretAccessKey']
 set_token = credentials['SessionToken']

Commands to run inside the SSH session of the server
 commands = [command,

Scaling Up Serverless Architectures Chapter 6

[182]

"sudo apt-get -y update",
"sudo apt-add-repository -y ppa:ansible/ansible",
"sudo apt-get -y update",
"sudo apt-get install -y ansible python-pip git awscli",
"sudo pip install boto markupsafe boto3 python-dateutil
futures",
"ssh-keyscan -H github.com >> ~/.ssh/known_hosts",
"git clone <repository where your ansible script is>
/home/ubuntu/<>/",
"chmod 400 <>.pem",
"cd <>/<>/; pwd ; nohup ansible-playbook -vvv provision.yml >
ansible.out 2> ansible.err < /dev/null &"]

Running the commands
 for command in commands:
 logging.critical("Executing %s", command)
stdin, stdout, stderr = c.exec_command(command)
 logging.critical(stdout.read())
 logging.critical("Errors : %s", stderr.read())
 c.close()
 return dns_name

Security best practices
Ensuring high-level security has always been a major problem for microservices. There are
multiple levels of software that you need to keep in mind while designing the security
layers. The engineers need to define the security protocols for each of the services and then
also define the protocols for the data interaction and transfer between each service.

You have to keep all these aspects in mind before architecting distributed serverless
systems, where (almost) each Ansible task is a microservice. In this section, we will
understand how to architect the security protocols, and also monitor them using some of
AWS's built-in services.

Scaling Up Serverless Architectures Chapter 6

[183]

We will go through a step-by-step understanding of how to write security protocols for our
serverless architectures:

Firstly, whenever you are creating a session inside your AWS Python scripts1.
using Boto, try to create temporary credentials using the AWS Secure Token
Service (STS), which creates temporary credentials for a specific period of time:

You can look at the documentation of the STS at: https:/ ​/​docs. ​aws.
amazon. ​com/ ​STS/ ​latest/ ​APIReference/ ​Welcome. ​html.

The AssumeRole API of the STS service enables programmers to assumes IAM2.
roles into their code:

https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

Scaling Up Serverless Architectures Chapter 6

[184]

You can find its documentation on the following page: https:/ ​/​docs. ​aws.
amazon. ​com/ ​STS/ ​latest/ ​APIReference/ ​API_ ​AssumeRole. ​html

The Python version of this can be referred to, in the boto3 documentation:3.

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

Scaling Up Serverless Architectures Chapter 6

[185]

This documentation can be found here: http:/ ​/​boto3. ​readthedocs. ​io/
en/​latest/ ​reference/ ​services/ ​sts. ​html.

Scrolling down, you can find the usage of the AssumeRole API in Python:4.

Proper care should be taken so that the data exchange between microservices5.
and/or between the microservices and other AWS resources happens securely
with authentication. For example, the developer can configure S3 buckets to
restrict actions such as unencrypted uploads, downloads, and insecure file
transfers. The bucket policy can be written as follows to ensure all of these things
are taken care of:

{
 "Version": "2012-10-17",
 "Id": "PutObjPolicy",
 "Statement": [
 {
 "Sid": "DenyIncorrectEncryptionHeader",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::<bucket_name>/*",

http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html

Scaling Up Serverless Architectures Chapter 6

[186]

 "Condition": {
 "StringNotEquals": {
 "s3:x-amz-server-side-encryption": "aws:kms"
 }
 }
 },
 {
 "Sid": "DenyUnEncryptedObjectUploads",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::<bucket_name2>/*",
 "Condition": {
 "Null": {
 "s3:x-amz-server-side-encryption": "true"
 }
 }
 },
 {
 "Sid": "DenyNonSecureTraffic",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::<bucket_name>/*",
 "Condition": {
 "Bool": {
 "aws:SecureTransport": "false"
 }
 }
 },
 {
 "Sid": "DenyNonSecureTraffic",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::<bucket_name2>/*",
 "Condition": {
 "Bool": {
 "aws:SecureTransport": "false"
 }
 }
 }
]
}

Scaling Up Serverless Architectures Chapter 6

[187]

Once you have finished writing the bucket policy, you can update it in the6.
Bucket Policy section of S3:

AWS Config provides a very useful interface for monitoring several security7.
threats and helps in efficiently avoiding or catching them. The dashboard of AWS
Config looks like this:

Scaling Up Serverless Architectures Chapter 6

[188]

You can see that the dashboard shows 2 non-compliant resource(s) which means8.
that two of my AWS resources are not complying with the rules that I have put
into config. Let's have a look at these rules:

This means that we have two AWS S3 buckets which do not have SSL requests turned on
via the bucket policy. Once you click on the Rules link, you can see more details which
include the bucket(s) names, and also the timestamps at which these configuration changes
have been recorded:

Scaling Up Serverless Architectures Chapter 6

[189]

Identifying and handling difficulties in
scaling
Scaling up distributed serverless systems comes with its own set of engineering roadblocks
and problems, and the fact that the concept of serverless systems is still in a very infantile
stage, means that most of those problems are still unsolved. But, that shouldn't stop us from
trying to solve and work around these roadblocks.

We will try and understand some of these roadblocks, and also learn how to solve or work
around them, as discussed here:

This is more of an architect's mistake rather than a roadblock. However, it is
important to address this as one too many architects/software engineers fell and
fall into the overestimation or the underestimation trap. The problem we will try
to address is the exact number of instances you have to launch when scaling up.
In most self-hosted MapReduce-style systems, it is taken care of out of the box.
This problem can be taken care of, by properly benchmarking the workloads
beforehand on different types of instances, and scale accordingly. Let's
understand this by taking an example of a machine learning pipeline. Thanks to
our benchmarking efforts, we already know that an m3.medium instance can
handle 100 files in 10 minutes. So, if my workload has 202 files and I want it to be
completed in close to 10 minutes, I would like to have two such instances for
handling this. Even if we don't know the workloads in advance, we can write a
Python script for getting that number from wherever the data is, be it an SQS
queue pointer, or S3, or some other database; and that number can be entered
into the Ansible script and make the playbook run.
As we have already learned about handling security in huge serverless systems,
we will keep this short. There are several complex data movements happening
inside a large distributed serverless workload. Using proper security protocols
and monitoring them, as mentioned in detail in the previous security section, will
help in overcoming this problem.
Logging is a major problem in distributed serverless systems, which is also still
unsolved completely. As the systems and containers are destroyed once the
workload has been completed, logging has been a very difficult task to
undertake. There are several ways you can log the workflow. The most popular
ones are logging every Ansible task separately, and one where the last Ansible
task is to zip up the logs and send the zipped file to a data store, such as S3 or
Logstash. The last one is the most preferred way as it captures the execution flow
better, as the entire log trace is in a single file.

Scaling Up Serverless Architectures Chapter 6

[190]

Monitoring is similar to logging. Monitoring these systems is also mostly an
unsolved problem. As the servers are all terminated once the workload is run, we
can't poll for historic logs from the servers, and latency also will not be tolerated,
or more precisely, will not be possible. Monitor every task of Ansible by having a
task after each, that sends a custom metric to CloudWatch upon a condition that
the previous task has executed successfully or not. This will look something like
this:

Debugging trial runs can also become very frustrating, very fast. This is because,
if you are not quick, the entire system can be terminated before you even get a
chance to look at the logs. Also, Ansible emits very verbose logs while
debugging, which might seem overwhelming when spawning several instances.
Some basic Unix hacks can help in handling these problems. The most important
one is to monitor the tail of the log file, about 50 lines or so. This helps in not
getting overwhelmed by the huge amount of logs, and it also keeps an eye on the
execution of the Ansible notebook.

Summary
In this chapter, we have learned how to scale up our serverless architecture(s) to being
massively distributed serverless infrastructure(s). We have learned how to build on our
existing knowledge of building and deploying Lambda infrastructures to handle massive
workloads.

We have learned to use the concept of nohup to use our Lambda function as a launch board
for building a master-worker architecture that takes parallel computing into account. We
have learned how to leverage configuration and orchestration tools, such as Ansible and
Chef, to spawn and orchestrate multiple EC2 instances.

Scaling Up Serverless Architectures Chapter 6

[191]

The knowledge gained from this chapter will open doors for building many complex
infrastructures which can handle data and requests, both in terms of size and speed. This
will allow you to operate multiple microservices closely intertwined together. This will also
help you to build MapReduce-style systems and interact with other AWS services,
seamlessly.

7
Security in AWS Lambda

We have learned how to build and configure serverless functions in AWS Lambda. We have
learned how to scale them up using third-party tools. We have also had a close look at how
microservices work and how to ensure security in them, while ensuring resilience and
speed.

In this chapter, we will understand security in the AWS environment, keeping in mind our
Lambda functions. We will understand how services, such as AWS VPCs, security groups,
and subnets work, with respect to Lambda functions.

This chapter covers the following topics:

Understanding AWS VPCs
Understanding subnets in VPCs
Securing Lambda inside private subnets
Controlling access to Lambda functions
Using STS inside Lambda for secure session-based execution

Security in AWS Lambda Chapter 7

[193]

Understanding AWS Virtual Private Clouds
(VPCs)
In this section, we will understand AWS VPCs. VPCs are a very common component in the
security layers of the AWS environment; they are isolated parts of the cloud where users
can host their services and build their infrastructures. VPCs are the first layer of security.
We will try to understand VPCs in the context of Lambda functions, in the form of bullet
points, given here:

VPCs can be created and modified in the AWS's VPC service dashboard, which1.
looks like this:

Now, let's quickly learn how to create a VPC of our own. For that, click on Create2.
VPC. You will see a pop-up box which asks you to enter more meta information
for your new VPC:

Security in AWS Lambda Chapter 7

[194]

The Name tag box needs to have the name of the VPC. The IPv4 CIDR block is3.
where you enter your IP range for classless inter-domain routing. Then, you can
choose whether you want an IPv6 CIDR block or not. You can also select the
Tenancy settings; this defines how your EC2 instances run within your VPC, and
the resource sharing accordingly:

Security in AWS Lambda Chapter 7

[195]

We have successfully created our VPC with the necessary settings and with4.
the Test-VPC name. We can see this in our dashboard with all the corresponding
meta settings:

You can also see a summary of the VPC which includes the IPv4 settings, the5.
Network Access Control List (ACL) settings, the Dynamic Host Configuration
Protocol (DHCP) options, and also the DNS settings, all of which can also be
configured later according to our needs. You can also see IPv4 CIDR blocks under
the next CIDR Blocks tab:

Security in AWS Lambda Chapter 7

[196]

We can also create VPC flow logs, which log traffic and data movements in and6.
out of the VPC. This will promote better log management, ensuring security, and
better monitoring. Currently, flow logs have not been set up:

To create VPC flow logs, you can just click on the Create Flow Log button at the7.
bottom. This will open up a flow log creation wizard where you can enter the
details for the various settings, accordingly. The creation wizard looks like this:

Security in AWS Lambda Chapter 7

[197]

Once all the details have been entered, you can go ahead and click on the Create8.
Flow Log option at the bottom, which will create the VPC flow log with the
desired settings:

Once created, you can see the newly created VPC flow log under the Flow9.
Logs tab, as shown here:

Security in AWS Lambda Chapter 7

[198]

Now, let's understand VPCs from AWS Lambda's point of view. Just like any10.
other AWS resource, Lambda functions can also be hosted inside VPCs. You can
see that setting under the Network section of your AWS Lambda function. It
looks like this:

From the drop-down list, you can select a VPC in which you want to host your11.
Lambda function:

Security in AWS Lambda Chapter 7

[199]

Once you select a VPC, it will further ask you for details regarding subnets,12.
security groups, and so on, as shown in the following screenshot. We will learn
about them in the sections following this, so, we will configure the VPC for our
Lambda function later:

Security in AWS Lambda Chapter 7

[200]

Understanding subnets in VPCs
In this section, we will learn about and understand AWS subnets, which are subparts of
AWS VPCs. VPCs can be further divided into multiple subnets. These subnets can either be
public or private, depending on the security needs of your architecture. We will look at the
concept of subnets from the point of view of AWS Lambda functions.

We will perform the following steps:

You can go to the Subnets menu via the VPC page itself. You need to click on the1.
Subnets option under the Your VPCs option on the left:

Security in AWS Lambda Chapter 7

[201]

This will take you to the subnets console, where you will see some already2.
existing subnets. These are the default subnets for each availability zone in your
region:

Now, to create a new subnet, you need to click on the blue Create Subnet button3.
on the top-left side of the console. In the creation wizard, you will be asked to
enter the following details—the name of the subnet, the VPC you want to place it
in, availability zones, and also preferred IPv4 CIDR blocks. I have placed this
subnet inside the VPC we created in the previous section:

Security in AWS Lambda Chapter 7

[202]

When you click on the Yes, Create button on the bottom-right side of the creation4.
wizard, the new subnet is created. You can see it listed in the list of your subnets
on your console:

Security in AWS Lambda Chapter 7

[203]

Now, we will fill in the security settings for our Lambda function with our VPC5.
and subnets, which we have just created. Currently, this is what the Network
setting for AWS Lambda looks like:

Security in AWS Lambda Chapter 7

[204]

After adding in the required settings, which are the details of the VPC, subnet6.
and security groups, the Network settings of our Lambda function will look like
this:

...

Security in AWS Lambda Chapter 7

[205]

After setting up your network settings for your Lambda function, click on the7.
orange Save button on the top-right of your Lambda console to save those
settings to your Lambda function.

Security in AWS Lambda Chapter 7

[206]

Securing Lambda inside private subnets
Private subnets are subnets that are not open to the internet. All of their traffic is routed via
the public subnet in the same VPC using the concept of route tables. Let's understand how
to position our Lambda functions inside private subnets to add an extra layer of security:

Subnets created in the AWS console are not private by default. Let's evaluate and1.
confirm this by going through the details of the subnet that we just created:

Clicking on the Route Table tab will show us the routing settings of our subnet,2.
which basically tells us what kind of traffic is allowed into it:

Security in AWS Lambda Chapter 7

[207]

In the Network ACL tab, you can see the network rules assigned for our subnet.3.
Here, we can see that the subnet is open to all traffic (0.0.0.0/0). So, in order to
make our subnet private, we need to fix this:

Go to the Network ACLs console by clicking on the link to the left side of your4.
console. You will arrive at the following page:

Security in AWS Lambda Chapter 7

[208]

Now, click on the blue Create Network ACL button to create a new ACL. Select5.
our VPC and then enter a name for the ACL in the creation wizard:

Now, in the inbound rules of the new ACL, add in the following rule. In the6.
Source section, add the IPv4 setting of any of your public subnets and click Save:

Security in AWS Lambda Chapter 7

[209]

Now, replace the ACL of our current subnet with the new one that will make our7.
subnet a private subnet:

Now, we have our Lambda function in a private subnet, making it more secure.

Controlling access to Lambda functions
We have gone through all the security settings needed to ensure that our Lambda functions
and our serverless architectures are secure. So, an engineer working on serverless systems
should keep the following points in mind while designing their infrastructure from a
security point of view:

The VPC and the subnet settings can be added under the Network section of the
Lambda function.
It is recommended that the Lambda function is placed across at least two subnets
for fault tolerance purposes. However, this is not compulsory.
If you are placing your Lambda function inside a private subnet, you need to
ensure that the private subnet is receiving the appropriate traffic from your
public subnet(s) in that VPC. If not, then the Lambda function is essentially
locked out.

Security in AWS Lambda Chapter 7

[210]

Using STS inside Lambda for secure
session-based execution
While accessing other AWS services and components from inside your Lambda functions,
you can make use of AWS's Simple Token Service (STS) to ensure session-based access,
which will essentially add an extra layer of security. As we have already discussed, and
learned how to use, STS credentials in our code, we will skip over to the documentation
links.

The official documentation of AWS STS will help you understand how session-based access
works: https:/​/ ​docs. ​aws. ​amazon. ​com/ ​IAM/ ​latest/ ​UserGuide/ ​id_ ​credentials_ ​temp.
html.

And this is the Boto3 Python Documentation for using STS credentials inside Python
code: http:/​/​boto3. ​readthedocs. ​io/ ​en/ ​latest/ ​reference/ ​services/ ​sts. ​html.

Summary
In this chapter, we have learned how security works in Lambda functions in a deep-dive
mode. We have understood how VPCs and subnets work in the AWS environment. We
have learned to create a VPC and also created public and private subnets. This will give you
a better understanding of how security works from the whole of the AWS perspective.

We have also learned how to place your Lambda functions inside the VPCs and the subnets
we have created throughout this chapter. We understood how to handle and route traffic
inside our VPCs and subnets.

Finally, we also learned how to implement better security in our Python code using session-
based access to other AWS components, thereby placing security in the control of the
developer.

In the next chapter, you will learn about the Serverless Application Model (SAM) and how
to write SAM models and deploy your Lambda applications through them.

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html

8
Deploying a Lambda Function

with SAM
So far, we have learned about Lambda functions and how to build them. We have learned
that a Lambda function has a definite set of triggers that would trigger the function to carry
out a particular task. The task is written as a Python module and the script is what we call a
function. We have also learned about the different settings of Lambda functions, which
include its core settings and also other settings, such as security and network.

There is also another alternative to creating and deploying Lambda functions, which is the
AWS Serverless Application Model (AWS SAM). This format is based on the concept of
infrastructure as code. This concept is inspired by AWS CloudFormation, which is a form
of infrastructure as code.

We will be learning about AWS CloudFormation and using that knowledge to understand
and build AWS SAM models for creating Lambda functions. We will be covering the
following concepts in this chapter:

Deploying Lambda functions
Using CloudFormation for serverless services
Deploying with SAM
Understanding security in SAM

Deploying a Lambda Function with SAM Chapter 8

[212]

Introduction to SAM
In this section, we will learn about SAM, which will help us build and deploy serverless
functions:

As mentioned earlier, SAM is about writing infrastructure as code. So, this is1.
what a Lambda function would be described as in SAM:

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Resources:
 < Name of function >:
 Type: AWS::Serverless::Function
 Properties:
 Handler: < index.handler >
 Runtime: < runtime >
 CodeUri: < URI of the bucket >

In this block of code, we enter the details—the name of the function, and the URI2.
of the S3 bucket where our code package is hosted. In the same way that we
named the index and the handler in our Lambda settings, we need to enter those
details here, too. The index.handler is the file in which our function code is
located. The Handler is the name of the function in which our Lambda logic is
written. Also, the Runtime is user-defined. You can select from all the available
languages that are supported by AWS Lambda. The scope of this book is limited
to the Python language, so we will stick to either of the available Python versions:

Deploying a Lambda Function with SAM Chapter 8

[213]

We can also add environment variables, as shown here, in our Lambda function,3.
too. These can be very easily edited and configured just as we add, update,
and/or delete code, which is an added advantage of the infrastructure as code
style of building infrastructures:

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Resources:
 PutFunction:
 Type: AWS::Serverless::Function
 Properties:
 Handler: index.handler
 Runtime: < runtime >
 Policies: < AWSLambdaDynamoDBExecutionRole >
 CodeUri: < URI of the zipped function package >
 Environment:
 Variables:
 TABLE_NAME: !Ref Table
DeleteFunction:
 Type: AWS::Serverless::Function
 Properties:
 Handler: index.handler
 Runtime: nodejs6.10
 Policies: AWSLambdaDynamoDBExecutionRole
 CodeUri: s3://bucketName/codepackage.zip
 Environment:
 Variables:
 TABLE_NAME: !Ref Table
 Events:
 Stream:
 Type: DynamoDB
 Properties:
 Stream: !GetAtt DynamoDBTable.StreamArn
 BatchSize: 100
 StartingPosition: TRIM_HORIZON
DynamoDBTable:
 Type: AWS::DynamoDB::Table
 Properties:
 AttributeDefinitions:
 - AttributeName: id
 AttributeType: S
 KeySchema:
 - AttributeName: id
 KeyType: HASH
 ProvisionedThroughput:
 ReadCapacityUnits: 5
 WriteCapacityUnits: 5

Deploying a Lambda Function with SAM Chapter 8

[214]

 StreamSpecification:
 StreamViewType: streamview type

The preceding SAM code invokes two Lambda functions that point to an AWS4.
DynamoDB table. The entire SAM code is an application that consists of a couple
of Lambda functions. You need to enter the necessary details for making this
work. The Runtime needs to be updated with either of the available Python
runtimes. The corresponding policy for dealing with the DynamoDB tables needs
to be updated in the Policies section. The CodeUri section needs to be updated
with the S3 URI of the code package.
It is to be noted that the meta information should always be included for all SAM,5.
which includes the AWSTemplateFormatVersion and Transform. This would
tell CloudFormation that the code you have written is an AWS SAM code and a
serverless application. The two lines are as follows:

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31

If your serverless function needs to access a single table of DynamoDB, you can6.
start by creating a DynamoDB table via your SAM function itself using the
SimpleTable attribute. This can be done as follows:

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Resources:
 < TableName >:
 Type: AWS::Serverless::SimpleTable
 Properties:
 PrimaryKey:
 Name: id
 Type: String
 ProvisionedThroughput:
 ReadCapacityUnits: 5
 WriteCapacityUnits: 5

Now, we will learn how to create a Lambda function with a trigger. As we are7.
already using DynamoDB for the examples, we will use the same as a trigger in
this step. The SAM code for this would look as follows:

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Resources:
 < Name of the function >:
 Type: AWS::Serverless::Function
 Properties:

Deploying a Lambda Function with SAM Chapter 8

[215]

 Handler: index.handler
 Runtime: < runtime >
 Events:
 Stream:
 Type: DynamoDB
 Properties:
 Stream: !GetAtt DynamoDBTable.StreamArn
 BatchSize: 100
 StartingPosition: TRIM_HORIZON
< Name of the table >:
 Type: AWS::DynamoDB::Table
 Properties:
 AttributeDefinitions:
 - AttributeName: id
 AttributeType: S
 KeySchema:
 - AttributeName: id
 KeyType: HASH
 ProvisionedThroughput:
 ReadCapacityUnits: 5
 WriteCapacityUnits: 5

CloudFormation for serverless services
In this section, we will learn how CloudFormation can be used to build and deploy Lambda
functions. We will do the following:

We will write a CloudFormation template for a Lambda function that1.
periodically pings a website and gives an error if there is any failure in the
process. The CloudFormation template for this is as follows:

AWSTemplateFormatVersion: '2010-09-09'
Transform: 'AWS::Serverless-2016-10-31'
Description: 'Performs a periodic check of the given site,
erroring out on test failure.'
Resources:
lambdacanary:
 Type: 'AWS::Serverless::Function'
 Properties:
 Handler: lambda_function.lambda_handler
 Runtime: python2.7
 CodeUri: .
 Description: >-
 Performs a periodic check of the given site,
erroring out on test failure.

Deploying a Lambda Function with SAM Chapter 8

[216]

 MemorySize: 128
 Timeout: 10
 Events:
 Schedule1:
 Type: Schedule
 Properties:
 Schedule: rate(1 minute)
 Environment:
 Variables:
 site: 'https://www.google.com/'
 expected: Search site.

There is a lot of syntax in this CloudFormation snippet. We will now try to2.
understand it in a bit more detail:

In the first three lines that contain the meta details of the Lambda1.
function, we have the following line—Transform:

'AWS::Serverless-2016-10-31'. This line is used to define the
resources that a user will be using/accessing, through a
CloudFormation template. As we are using a Lambda function, we
have specified it as Serverless.
We have also defined the memory size that our function will be using.2.
It is similar to how we learned to view and change the memory settings
in the Lambda's console.
Timeout is the amount of time the Lambda function can keep retrying3.
before considering the attempt as a failure.

You can also see that we have added environment variables to our Lambda function that
will be stored in the Lambda container and used when needed by the system.

Deploying with SAM
In this section, we will learn how to deploy the SAM applications. We have already learned
what SAM applications and code look like, so we will learn how to deploy them via AWS
CloudFormation:

Firstly, let's set up our local environment for deployment purposes, and then start1.
by installing awscli from pip:

Deploying a Lambda Function with SAM Chapter 8

[217]

Next, you will need to configure your AWS environment using your credentials:2.

You will need to enter the following details to make sure your AWS environment3.
is successfully configured:

Your AWS Access Key
Your AWS Secret Key
The default region in which you want to operate
The default output format in which you want your data

Now, let's try to deploy a simple Hello World Lambda application via SAM. We4.
will have two code files for this. One is the Python file and the other is the
template yaml file.

Deploying a Lambda Function with SAM Chapter 8

[218]

We will use the default Hello World example for Python, as we are trying to5.
understand how SAM deployments work instead of stressing too much about the
code for now. The Python script will be as follows:

import json
print('Loading function')
def lambda_handler(event, context):
 #print("Received event: " + json.dumps(event, indent=2))
 print("value1 = " + event['key1'])
 print("value2 = " + event['key2'])
 print("value3 = " + event['key3'])
 return event['key1'] # Echo back the first key value
 #raise Exception('Something went wrong')

We will use a basic template yaml file for the SAM function too, whose only job is6.
to define its meta information and to run the Python script that is mentioned
previously. The template yaml file will look like this:

AWSTemplateFormatVersion: '2010-09-09'
Transform: 'AWS::Serverless-2016-10-31'
Description: A starter AWS Lambda function.
Resources:
 helloworldpython3:
 Type: 'AWS::Serverless::Function'
 Properties:
 Handler: lambda_function.lambda_handler
 Runtime: python3.6
 CodeUri: .
 Description: A starter AWS Lambda function.
 MemorySize: 128
 Timeout: 3

Now, we will package the SAM template we just created, using the command7.
line. The instructions for packaging the code are as follows:

aws cloudformation package --template-file template.yaml --
output-template-file output.yaml --s3-bucket receiver-bucket

Deploying a Lambda Function with SAM Chapter 8

[219]

You get the following output:

This will create an output yaml file that needs to be deployed, as mentioned in8.
the preceding trace. The output.yaml file looks like this:

AWSTemplateFormatVersion: '2010-09-09'
Description: A starter AWS Lambda function.
Resources:
 helloworldpython3:
 Properties:
 CodeUri: s3://receiver-
bucket/22067de83ab3b7a12a153fbd0517d6cf
 Description: A starter AWS Lambda function.
 Handler: lambda_function.lambda_handler
 MemorySize: 128
 Runtime: python3.6
 Timeout: 3
 Type: AWS::Serverless::Function
Transform: AWS::Serverless-2016-10-31

Now, as we have packaged the SAM template, we will now deploy it. We will9.
use the instructions shown in the trace when we did the packaging for the
deployment process. The instructions for deployment are as follows:

aws cloudformation deploy --template-file
/Users/<path>/SAM/output.yaml --stack-name 'TestSAM' --
capabilities CAPABILITY_IAM

This will give you the following output:

Deploying a Lambda Function with SAM Chapter 8

[220]

We can head over to the CloudFormation console to look at the template we just10.
deployed. The deployed template will look something like this:

In the Template tab shown here, we can see both the original template and the11.
processed template. The original template can be seen by selecting the first radio
button:

Deploying a Lambda Function with SAM Chapter 8

[221]

The processed template can be seen by selecting the second radio button under12.
the Template tab at the bottom:

If we head over to the Lambda console, we will see the newly created Lambda13.
function via SAM with the corresponding name given:

Deploying a Lambda Function with SAM Chapter 8

[222]

Clicking on the Functions will give us more information about it. It also mentions14.
the SAM template and the CloudFormation template from which it was created:

Let's create basic tests for the Lambda function. The test creation console can be15.
opened by clicking on the Test button:

Deploying a Lambda Function with SAM Chapter 8

[223]

Now, once the tests have been created, you can again click on the Test button.16.
This will run the testing with the updated test cases. The logs from a successful
run will look like this:

Now, let's go through each component of the Lambda function properly. The17.
Configuration shows the triggers and the logging settings of our Lambda
function. We are logging into the CloudWatch service of AWS:

Deploying a Lambda Function with SAM Chapter 8

[224]

We can also see the invocation metrics in the Monitoring option in the Lambda18.
console. We can see exactly one Lambda invocation:

You can see the code files in the Function code section. You can see the folder19.
structure in the left-hand corner of the interactive code editor that contains both
the template.yaml file and the function code:

Deploying a Lambda Function with SAM Chapter 8

[225]

And further below, you can see the pre-existing environment variable named20.
lambda:createdBy, and also the timeout setting we mentioned in our template.

Understanding security in SAM
So far, we have learned how to write, build, package, and deploy Lambda functions using
the SAM. We will now understand how security works inside them:

You can scroll to the bottom of the Lambda console to see the network and1.
security settings, where the VPC and the subnet details are mentioned:

Deploying a Lambda Function with SAM Chapter 8

[226]

Now, we will add in the network settings, which include the security groups and2.
the subnet IDs:

AWSTemplateFormatVersion: '2010-09-09'
Transform: 'AWS::Serverless-2016-10-31'
Description: A starter AWS Lambda function.
Resources:
 helloworldpython3:
 Type: 'AWS::Serverless::Function'
 Properties:
 Handler: lambda_function.lambda_handler
 Runtime: python3.6
 CodeUri: .
 Description: A starter AWS Lambda function.
 MemorySize: 128
 Timeout: 3
 VpcConfig:
 SecurityGroupIds:
 - sg-9a19c5ec
 SubnetIds:
 - subnet-949564de

Now, package and deploy the newly updated SAM template like we did in the3.
previous section:

Now you will see the corresponding network and security settings, once you4.
have packaged and deployed the CloudFormation template after the
corresponding edits. The Network section looks as follows:

Deploying a Lambda Function with SAM Chapter 8

[227]

You can also see the inbound rules of your corresponding security groups that5.
are linked with the VPC in your Network settings:

Deploying a Lambda Function with SAM Chapter 8

[228]

You can also see the completed CloudFormation template in your console with6.
the updated network and security settings, which means that deployment has
been successful:

You can also see the original template under the Templates option in the bottom7.
corner of the console:

Deploying a Lambda Function with SAM Chapter 8

[229]

The processed template can be found by selecting the View processed template8.
option beside the original template option at the bottom of the console:

Deploying a Lambda Function with SAM Chapter 8

[230]

Summary
In this chapter, we learned how to deploy Lambda functions as infrastructure as code via
SAM, which is a new way of writing and deploying Lambda functions. This makes it easier
to integrate with other IaaS services, such as CloudFormation. We also learned about the
AWS CloudFormation service, which is the service that allows and facilitates infrastructure
as code. We also learned how security works inside SAM code and how to configure VPC
and subnet settings.

In the next chapter, you will be introduced to Microsoft Azure functions, along with
configuring and understanding the components of the tool.

9
Introduction to Microsoft Azure

Functions
So far, we have learned how to build serverless functions and serverless architectures using
Python in the AWS environment. We have also learned about the settings and environment
of the AWS Lambda tool in great detail. We shall now learn and explore its counterpart
from Microsoft Azure Functions.

In this chapter, you will learn how Microsoft Azure Functions work, what the Microsoft
Azure Functions console looks like, and how to go about understanding the settings in the
console. This chapter is divided into the following sections:

Introduction to Microsoft Azure Functions
Creating your first Azure Function
Understanding triggers
Understanding logging and monitoring
Best practices for writing Microsoft Azure Functions

Introduction to Microsoft Azure Functions Chapter 9

[232]

Introduction to Microsoft Azure Functions
Microsoft Azure Functions is the Azure counterpart of AWS's Lambda service. In this
section, we will learn how to locate and navigate the Microsoft Azure Functions console. So,
let's start by performing the following steps:

You can locate the Azure Functions app by navigating to the All services tab on1.
the left menu and typing out the function filter. You will now notice the Microsoft
Azure Function's service under the name, Function Apps:

Introduction to Microsoft Azure Functions Chapter 9

[233]

Once you click on that, you will be re-directed to the Function Apps console. For2.
now, it will be empty if you haven't created any functions. The console will look
something like this:

Introduction to Microsoft Azure Functions Chapter 9

[234]

Now, let's start with creating an Azure Function. To do so, we need to click on3.
the Create a resource option on the left menu, then click on the Compute option
from that list, and then select the Function App option from the subsequent list
of options:

Microsoft Azure Functions come under the list of Compute resources on the dashboard. In
the following sections, we will learn how to create Microsoft Azure Functions and also
understand the different kinds of triggers and how they work.

Introduction to Microsoft Azure Functions Chapter 9

[235]

Creating your first Azure Function
In this section, we will learn how to create and deploy an Azure Function. We will go
through the process step by step in order to understand how each section of an Azure
function works:

When you click on the Functions App in the menu, you will be re-directed to the1.
Function App creation wizard, as shown in the following screenshot:

Introduction to Microsoft Azure Functions Chapter 9

[236]

Add the required information in the wizard accordingly. Choose Linux (Preview)2.
as the OS. Then, click on the blue Create button at the bottom of the wizard:

Introduction to Microsoft Azure Functions Chapter 9

[237]

Clicking on the Automation options at the bottom will open up a validation3.
screen for automating Function deployments. This is not needed for this chapter.
This will simply validate your Azure Function:

Once you click Create, you will see the deployment in progress under4.
the Notifications menu:

Introduction to Microsoft Azure Functions Chapter 9

[238]

Once it has been successfully created, it will be reflected in your notifications list5.
with a green-colored notification:

Clicking on Go to resource will take you to the newly created Azure Function.6.
The function console will look like this:

Introduction to Microsoft Azure Functions Chapter 9

[239]

We have successfully created an Azure Function. We will cover in more detail triggers,
monitoring, and security in the forthcoming sections of this chapter.

Understanding triggers
In this section, we will look at how triggers work in Azures Function applications. We will
also learn about the different types of triggers and their purpose. Perform the following
steps:

In the left menu, click on the (+) symbol beside the Functions option for adding,1.
removing, or editing a trigger:

Introduction to Microsoft Azure Functions Chapter 9

[240]

You will be taken to the function creation console, which looks like this:2.

Introduction to Microsoft Azure Functions Chapter 9

[241]

Azure does not have a lot of support for Python. So, in this console, let's choose a3.
custom function of our own. Click on Custom function under the Get Started on
your own option at the bottom:

Introduction to Microsoft Azure Functions Chapter 9

[242]

In the function creation wizard, enable the Experimental Language option in the4.
right menu. Now, you will be able to see the Python option in the available
languages:

Introduction to Microsoft Azure Functions Chapter 9

[243]

There are two triggers that are available for the Python language. One is the5.
HTTP trigger and the other is the Queue trigger, as seen in the following
screenshot:

Introduction to Microsoft Azure Functions Chapter 9

[244]

The HTTP trigger will trigger the function whenever it receives an HTTP request.6.
When you click on it, you will notice options for adding different HTTP-related
settings, such as authorization and name:

Introduction to Microsoft Azure Functions Chapter 9

[245]

The next trigger is the Queue trigger. This will trigger the function whenever a7.
message is added to the queue. We have done the same in AWS Lambda in one
of our previous chapters too:

Introduction to Microsoft Azure Functions Chapter 9

[246]

Understanding logging and monitoring in
Azures Functions
In this section, we will learn and understand the monitoring and logging mechanisms
available to the user in Microsoft Azure Functions. Perform the following steps:

By clicking on the Monitor option under the function, we can access the1.
monitoring suite of that particular Azure Function:

Introduction to Microsoft Azure Functions Chapter 9

[247]

The monitoring suite for the function that we created looks like this:2.

Introduction to Microsoft Azure Functions Chapter 9

[248]

Now, click on the Open Application Insights option at the top of the menu. This3.
will take you to the detailed monitoring page:

Introduction to Microsoft Azure Functions Chapter 9

[249]

If you scroll down, you will see the function-specific metrics, such as the server4.
response times and request performance. This is very useful as it means we don't
need separate dashboards for monitoring all these statistics:

Now that we have learned about Microsoft Azure Functions logging and monitoring, let's
go through some best practices.

Introduction to Microsoft Azure Functions Chapter 9

[250]

Best practices for writing Azure Functions
We have learned how to create, configure, and deploy Microsoft Azure Functions. We will
now learn about the best practices for using them:

Microsoft Azure Functions don't have a huge support for Python like AWS
Lambda. They have a very limited set of Python-based triggers. So, you need to
write custom functions for most of them. Developers need to keep that in mind
before taking a decision on using Microsoft Azure Functions. The languages
supported by Microsoft Azure Functions are C#, F#, and JavaScript:

The experimental languages that are supported by Microsoft Azure Functions
are Bash, Batch, PHP, TypeScript, Python, and PowerShell:

Introduction to Microsoft Azure Functions Chapter 9

[251]

Make sure you use the security settings properly to secure your functions. You
can find all the settings you need in the Platform features options:

Introduction to Microsoft Azure Functions Chapter 9

[252]

Finally, use monitoring as much as possible, as it is crucial to log and monitor
serverless functions. We have already gone through the monitoring details and
the corresponding settings.

Summary
In this chapter, we learned about Microsoft Azure Functions and how to build them. We
learned about the various functionalities available, along with the available triggers for the
Python runtime. We also learned and experimented with the logging and monitoring
capabilities of Microsoft Azure Functions along with understanding and experimenting
with the experimental features of Azure such as the additional runtimes apart from the
standard set of languages it offers out of the box.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Serverless computing in Azure with .NET
Sasha Rosenbaum

ISBN: 978-1-78728-839-3

Understand the best practices of Serverless architecture
Learn how how to deploy a Text Sentiment Evaluation application in an Azure
Serverless environment
Implement security, identity, and access control
Take advantage of the speed of deployment in the cloud
Configure application health monitoring, logging, and alerts
Design your application to ensure cost effectiveness, high availability, and scale

https://www.packtpub.com/application-development/serverless-computing-azure-and-net

Other Books You May Enjoy

[254]

Building Serverless Architectures
Cagatay Gurturk

ISBN: 978-1-78712-919-1

Learn to form microservices from bigger Softwares
Orchestrate and scale microservices
Design and set up the data flow between cloud services and custom business
logic
Get to grips with cloud provider’s APIs, limitations, and known issues
Migrate existing Java applications to a serverless architecture
Acquire deployment strategies
Build a highly available and scalable data persistence layer
Unravel cost optimization techniques

https://www.packtpub.com/application-development/building-serverless-architectures

Other Books You May Enjoy

[255]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
access
 controlling, to Lambda functions 209
Amazon Web Services (AWS) 5
Ansible
 reference link 171, 175
API execution
 Lambda function, deploying for 111, 112, 114,

115, 116, 117
API Gateway 17, 94
API resources 94
AssumeRole API
 reference link 183
authentication
 handling 118, 119, 120, 121, 122, 123, 124,

125

AWS cookbook
 reference link 169
AWS Key Management Service (KMS) 21, 29
AWS Lambda, triggers
 about 6, 16
 API Gateway 17
 AWS Simple Notification Service (AWS SNS) 20
 CloudWatch 18
 S3 19
AWS Secure Token Service (STS) 183
AWS Serverless Application Model 211
AWS Simple Notification Service (AWS SNS) 18
AWS Simple Queue Service (SQS) 74
AWS SNS 20
AWS's Virtual Private Cloud (VPC) 32
Azure Function
 best practices 250, 251, 252
 creating 235, 237, 238
 logging 246, 247, 248, 249
 monitoring 246, 247, 248, 249

 triggers, working 239, 241, 242, 243, 244, 245

C
Chef
 reference link 167
CloudFormation
 about 211
 used, for building Lambda functions 215, 216
 used, for deploying Lambda functions 215, 216
CloudTrail
 about 138, 140, 141, 142, 143, 144
 reference link 138
CloudWatch trigger
 about 84
 working 85, 86, 87, 88, 89, 91
CloudWatch
 about 18, 128
 functions 128, 129, 130, 132, 133, 134, 135,

136

 Lambda metrics 145, 146, 148, 150, 152, 153,
154, 155

 Lambda's logs 155, 156, 157, 158, 159, 160
cookbooks 171
cron facility
 in triggers 9

D
Dead Letter Queue (DLQ) 32
deployment package
 about 7, 23
 creating 44, 45, 46, 48
Docker
 reference link 22
Dynamic Host Configuration Protocol (DHCP) 195

[257]

E
event-based architectural designs 5

F
function as a service (FAAS) 6

I
Identity Access Management (IAM) 30
integration
 setting up 101

L
Lambda function
 about 21
 access, controlling to 209
 Advanced settings page 22
 configuring 24, 26, 27, 28, 30, 31, 32
 deploying, for API execution 111, 112, 114, 115,

116, 117
 executing, as containers 22, 23
 logging statements 160, 162, 163, 165
 securing, inside private subnets 206, 207, 208,

209

 testing 34, 35, 38
 versioning 39, 40, 41, 42, 43
Lambda's logs
 in CloudWatch 155, 156, 157, 158, 159, 160
Lambda's metrics
 in CloudWatch 155
logging statements
 in Lambda 160, 162, 163, 165
logging
 in Azure Function 246, 247, 248, 249

M
metrics, Lambda
 in CloudWatch 145, 146, 148, 150, 152, 153,

154

microservice architecture 7, 8
Microsoft Azure Functions 232, 233, 234
Microsoft's Azure 5
monitoring
 in Azure Function 246, 247, 248, 249

N
Network Access Control List (ACL) 195
nohup
 reference link 176

P
platform as a service (PaaS) 6

Q
queues 9, 10

S
S3 19
S3 trigger
 about 51
 working 51, 52, 53, 54, 55, 56, 57, 58, 59
scaling
 difficulties, handling 189, 190
 difficulties, identifying 189, 190
secure session-based execution
 STS, using for 210
Security Groups (SGs) 173
security
 best practices 182, 183, 185, 187
serverless API
 building 102, 103, 104, 106, 107, 108, 110
 creating 94, 96, 97, 98, 100, 101
Serverless Application Model (SAM)
 about 2, 212, 214
 applications, deploying 216, 217, 218, 219,

220, 221, 222, 223, 224
 security 225, 226, 228
serverless architectures
 about 5, 6, 7
 advantages 11
 disadvantages 11, 12
 reasons, for debugging difficulties 13
 scaling, considerations 12
servers
 creating 175, 178, 179
 terminating 175, 178, 179
SNS trigger
 about 61

 working 61, 62, 63, 65, 66, 67, 68, 69, 71, 72,
73

SQS trigger
 about 74
 working 75, 77, 79, 81, 82, 83, 84
STS
 using, inside Lambda for secure session-based

execution 210

T
third-party orchestration tools
 Ansible 171, 173, 174
 Chef 167, 169

triggers
 working 239, 241, 242, 243, 244, 245

U
user controls
 handling 118, 119, 120, 121, 122, 123, 124,

125

V
Version Control System (VCS) 39
Virtual Private Cloud (VPCs)
 about 173, 193, 195, 196, 197, 198, 199
 subnets 200, 201, 203, 204

	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: The Serverless Paradigm
	Understanding serverless architectures
	Understanding microservices
	Serverless architectures don't have to be real-time only
	Pros and cons of serverless
	Summary

	Chapter 2: Building a Serverless Application in AWS
	Triggers in AWS Lambda
	Lambda functions
	Functions as containers
	Configuring functions
	Testing Lambda functions
	Versioning Lambda functions
	Creating deployment packages
	Summary

	Chapter 3: Setting Up Serverless Architectures
	S3 trigger
	SNS trigger
	SQS trigger
	CloudWatch trigger
	Summary

	Chapter 4: Deploying Serverless APIs
	API methods and resources
	Setting up integration
	Deploying the Lambda function for API execution
	Handling authentication and user controls
	Summary

	Chapter 5: Logging and Monitoring
	Understanding CloudWatch
	Understanding CloudTrail
	Lambda’s metrics in CloudWatch
	Lambda's logs in CloudWatch
	Logging statements in Lambda
	Summary

	Chapter 6: Scaling Up Serverless Architectures
	Third-party orchestration tools
	The creation and termination of servers
	Security best practices
	Identifying and handling difficulties in scaling
	Summary

	Chapter 7: Security in AWS Lambda
	Understanding AWS Virtual Private Clouds (VPCs)
	Understanding subnets in VPCs
	Securing Lambda inside private subnets
	Controlling access to Lambda functions
	Using STS inside Lambda for secure session-based execution
	Summary

	Chapter 8: Deploying a Lambda Function with SAM
	Introduction to SAM
	CloudFormation for serverless services
	Deploying with SAM
	Understanding security in SAM
	Summary

	Chapter 9: Introduction to Microsoft Azure Functions
	Introduction to Microsoft Azure Functions
	Creating your first Azure Function
	Understanding triggers
	Understanding logging and monitoring in Azures Functions
	Best practices for writing Azure Functions
	Summary

	Other Books You May Enjoy
	Index

