

Expert AWS Development

Efficiently develop, deploy, and manage your enterprise apps
on the Amazon Web Services platform

Atul V. Mistry

BIRMINGHAM - MUMBAI

Expert AWS Development
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Meeta Rajani
Content Development Editor: Devika Battike
Technical Editor: Prachi Sawant
Copy Editor: Safis Editing
Project Coordinator: Judie Jose
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Graphics: Tom Scaria
Production Coordinator: Arvindkumar Gupta

First published: March 2018

Production reference: 1280318

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78847-758-1

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Atul V. Mistry holds all three AWS Associate certifications and has been a winner at AWS
IoT HackDay, 2017 event in Singapore. He has worked consistently with AWS and on
software design and development with JEE technology. He has diverse work experience,
having worked around the globe, and participated extensively in cross-functional project
delivery in the finance industry.

Writing this book would have been very difficult without the support of my parents, C.V.
Mistry and V. L. Mistry, family, and friends. Above all I am very thankful to the entire
Packt team as they supported me as per their progressive symbol. Finally, I would like to
thank Rashmi, my wife, and two kids (Mahi and Shivansh) for their cooperation.

About the reviewer
Miguel Angel Sanchez Marti has 4 years' experience of architecting solutions in AWS,
having worked for many clients. Currently, he's a business consultant at Datadec, which has
migrated most of its clients from on-premise to cloud solutions. They're involved in
delivering the latest technology and he is in charge of developing AI and machine learning
solutions for their clients.

He has been an AWS Certified Solutions Architect since June 2016. He was involved in
many software projects working for Binn.es as a software project manager.

Thanks to my family for being patient with me right from the time I took up this book, as it
decreased the amount of time I could spend with them—especially my wife, Julie, and my
6-year-old son, Alexander.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: AWS Tools and SDKs 7
Brief introduction to AWS tools and SDKs 8

AWS SDK for Java 9
AWS SDK for Java using Apache Maven 12

Configuring an SDK as a Maven dependency 13
AWS SDK for Java using Gradle 17
AWS SDK for Java using Eclipse IDE 19

AWS SDK for Node.js 27
AWS SDKs for IoT devices 30

AWS SDKs for mobile devices 31
AWS Mobile SDK for Android 31

AWS Mobile SDK setup for Android 33
Configuring AWS Mobile SDK for Android 34

Using Amazon Cognito to set AWS credentials 35
Summary 44

Chapter 2: Integrating Applications with AWS Services 45
Amazon DynamoDB 46

Integrating DynamoDB into an application 47
Low-level interface 48
Document interface 49
Object persistence (high-level) interface 51

DynamoDB low-level API 52
Troubleshooting in Amazon DynamoDB 52

Amazon Kinesis 53
Amazon Kinesis streams 54

Troubleshooting tips for Kinesis streams 55
Amazon Kinesis Firehose 57

Troubleshooting tips for Kinesis Firehose 59
Amazon SQS 60

Benefits and features of Amazon SQS 61
Troubleshooting in Amazon SQS 64
Amazon SWF 65
AWS SWF components 67
Amazon SWF examples 67

AWS SDK for Java using Apache Maven 68
Workflow implementations 69
Building and running a project 77

Troubleshooting Amazon SWF 78
Unknown resource fault 78

Table of Contents

[ii]

Non-deterministic workflows 79
Versioning problems 79
Troubleshooting and debugging a workflow execution 79
Lost tasks 79

Summary 80

Chapter 3: Continuous Integration and Continuous Deployment
Workflow 81

An overview of DevOps 82
The goal of DevOps 83
Reasons for integrating DevOps in your process 83
The benefits of DevOps 84

Continuous Integration – maintaining code repository 86
Continuous Integration best practices 88

Continuous Delivery – automating build and self-testing 90
Continuous Delivery benefits 93

Continuous Deployment – automating production deployment 93
How they work together 94
The benefits of Continuous Deployment 95

Tools used for DevOps processes 96
Source Code Management 96

GIT 97
Bitbucket 97
Subversion (SVN) 97

Build Automation tool 97
Maven 98
Ant 98
Gradle 98

Test automation 99
Selenium 99
JUnit 99
Cucumber 99

Continuous Integration 100
Jenkins 100
Bamboo 100
Hudson 100

Configuration Management 100
Puppet 101
Chef 101
Ansible 101

Continuous Monitoring 101
Nagios 102
Ganglia 102
Sensu 102

Virtual Infrastructure 102
CI/CD on AWS 103
Summary 103

Table of Contents

[iii]

Chapter 4: CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing 104
A brief overview of AWS for DevOps 105
AWS CodeCommit – maintaining code repository 106

Prerequisites of AWS CodeCommit 108
AWS CodeCommit setup using Git credentials 109
AWS CodeCommit setup using other methods 109

Getting started with AWS CodeCommit 110
AWS CodeBuild – automating the build 118

AWS CodeBuild benefits 118
AWS CodeBuild features 119

Creating AWS CodeBuild project using AWS Management Console 121
List of build project names 136
Viewing the build project's details 137
Updating the build project's details 138
Deleting the build project 138

Summary 139

Chapter 5: CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and
CodeStar 140

AWS CodeDeploy 141
AWS CodeDeploy benefits 141
Compute platforms and deployment options for AWS CodeDeploy 144

Compute platforms 144
Deployment options 144

AWS CodeDeploy – sample application deployment on a Windows Server 145
Step 1 – prerequisite configurations for AWS CodeDeploy 145
Step 2 – launch a Windows Server Amazon EC2 instance 147
Step 3 – configure source content to deploy to the EC2 instance 148
Step 4 – upload application to Amazon S3 153

Provision of S3 bucket with IAM user permission 153
Preparation and bundling of the application's file and pushing to the S3 bucket 154

Step 5 – deploy application 155
To deploy and monitor the application from AWS CLI 156
To deploy and monitor the application from AWS Management Console 158

Step 6 – update and redeploy application 164
Step 7 – clean up the application and related resources 164

AWS CodePipeline 165
AWS CodePipeline benefits 165
AWS CodePipeline features 166
Creating an AWS CodePipeline from the console 167
Creating an AWS CodePipeline from AWS CLI 174

JSON file creation 175
Execution of the create-pipeline command 175

AWS CodeStar 176
Creating a project in AWS CodeStar 177

AWS X-Ray 183
AWS X-Ray benefits 183

Table of Contents

[iv]

Key features of AWS X-Ray 184
Creating an AWS X-Ray example from the console 184

Summary 190

Chapter 6: User Authentication with AWS Cognito 191
Amazon Cognito benefits 192
Amazon Cognito features 193

Amazon Cognito User Pools 193
Getting started with Amazon Cognito User Pools 193

Amazon Cognito User Pool creation from the console 193
Amazon Cognito example for Android with mobile SDK 197

Amazon Cognito Federated Identities 204
Creating a new Identity Pool from the console 205

Amazon Cognito Sync 208
Summary 213

Chapter 7: Evaluating the Best Architecture 214
The comparison of traditional web hosting versus web hosting on
the cloud using AWS 215

Traditional web hosting 216
Challenges with traditional hosting 216

Cloud hosting 218
The AWS solution for common web hosting 220

AWS Well-Architected framework 224
Amazon EC2 instance and Elastic Load Balancer 225

Benefits and drawbacks of Amazon EC2 230
Elastic Load Balancing 231
Docker with the Amazon EC2 Container Service (Amazon ECS) 232

Use case of Docker 233
Containers 234
Amazon ECS 234
Serverless architecture with Lambda 237
Use cases for different architectures 240
Controlling and optimizing costs 244
Summary 246

Chapter 8: Traditional Web Hosting – Amazon EC2 and Elastic Load
Balancing 247

Amazon EC2 best practices 248
Troubleshooting instances 249

Instance terminates immediately 249
Errors when connected to an instance 250
Troubleshooting stopping your instance 252
Troubleshooting terminating (shutting down) your instance 252
Troubleshooting instance recovery failures 252
Troubleshooting instances with failed status checks 253

Table of Contents

[v]

Troubleshooting instance capacity 258
Getting console output and rebooting instances 259
My instance is booting from the wrong volume 259
Troubleshooting Windows instances 259

Elastic Load Balancing, auto scaling, and fault tolerant 263
Features of ELB 264
Benefits of Application Load Balancer 264
Benefits of Network Load Balancer 265
Benefits of Classic Load Balancer 266
Auto scaling and fault tolerance 267
Fault tolerance in AWS for Amazon EC2 268

Monitoring and optimizing the cost of the EC2 infrastructure 269
Cost efficient resources 271
Supply-demand matching 272
Know your expenses 272
Optimization over time 273

Continuous Integration and Continuous Deployment workflow 274
Summary 285

Chapter 9: Amazon EC2 Container Service 286
Docker 286
Container instances 295

Basic concepts of a container instance 295
Life cycle of a container instance 296
Checking the instance role for the account 297
AMIs for a container instance 297
Update notification subscribing to Amazon ECS–optimized AMI 297
Launching an Amazon ECS container instance 297
Bootstrapping container instances with Amazon EC2 user data 298
Connecting your container instance 299
Container instances with CloudWatch Logs 299
Container instance draining 300
Remotely managing your container instance 301
Deregistering your container instance 301

Amazon ECS clusters 302
Cluster concepts 302
Creating a cluster 303
Scaling a cluster 306
Deleting a cluster 307

Scheduling tasks 309
Service scheduler 309
Manually running tasks 309
Running tasks on a cron-like schedule 315
Custom schedulers 317
Task life cycle 317

Table of Contents

[vi]

Task retirement 318
Windows containers (beta) 318

Windows container concepts 319
A web application with Windows containers 319

Create a Windows cluster 320
Launch a Windows container instance into the cluster 321
Register a task definition for Windows 323
Create a service with the task definition 324
View the service 325

Monitoring and optimizing the cost of the infrastructure 326
Continuous Integration (CI) and Continuous Deployment (CD)
Workflow 327

Step 1 – addding required files source repository 328
Step 2 – creating a Continuous Deployment pipeline 330
Step 3 – adding Amazon ECR permissions to the AWS CodeBuild role 334
Step 4 – testing your pipeline 334

Summary 336

Chapter 10: Amazon Lambda – AWS Serverless Architecture 337
Microservices architecture 338

Microservice characteristics 339
Lambda and Lambda@Edge advanced topics and best practices 340

Environment variables 341
Setting up 341
Naming convention rules for environment variables 344
Environment variables and function versioning 344
Environment variable encryption 345
Error scenarios 347

Dead letter queues (DLQ) 347
Best practices for working with AWS Lambda functions 348

Function code 348
Function configuration 349
Alarming and metrics 350
Stream event invokes 350
Async invokes 350
Lambda VPC 350

Lambda@Edge 352
Lambda@Edge benefits 352

AWS Serverless Application Model (SAM) 353
Deploying with AWS SAM and AWS CloudFormation 354

Packaging and deployment 354
Packaging 354
Deployment 356

Introducing the Serverless Application Framework 358
What makes an application serverless? 358
Serverless applications benefits 359
The Serverless Framework 359

Table of Contents

[vii]

Serverless Framework benefits 360
Monitoring and optimizing the cost of the infrastructure 362

How does Lambda pricing work? 362
How do you keep AWS Lambda costs down? 363

CI and CD workflow 364
Step 1 – setting up the repository 368
Step 2 – creating the pipeline 369
Step 3 – modifying the generated policy 373
Step 4 – completing your deployment stage 373

Summary 375

Other Books You May Enjoy 376

Index 379

Preface
Continuous Integration/Continuous Deployment and the Agile methodology have enabled
huge advances in modern applications. This book will enable the reader to make use of
these rapidly evolving technologies to build highly scalable applications within AWS using
different architectures.

You will begin by installing the AWS SDK and will then get hands-on experience of
creating an application using the AWS Management Console and the AWS Command Line
Interface (CLI). Next, you will be integrating Applications with AWS services such as
DynamoDB, Amazon Kinesis, AWS Lambda, Amazon SQS, and Amazon SWF.

Following this, you will get well versed with CI/CD workflow and work with four major
phases in the release processes—Source, Build, Test, and Production. Next, you will learn to
apply AWS Developer tools in your Continuous Integration (CI) and Continuous
Deployment (CD) workflow. Later, you will learn about user authentication using Amazon
Cognito and also how you can evaluate the best architecture as per your infrastructure
costs. You will learn about Amazon EC2 and deploy an app using it. You will also get well
versed with container service, which is Amazon EC2 Container Service (Amazon ECS), and
you will learn how to deploy an app using it. Along with EC2 and ECS, you will also
deploy a practical real-world example of a CI/CD application with the Serverless
Application Framework, which is known as AWS Lambda. Finally, you will learn how to
build, develop, and deploy an application using AWS Developer tools such as AWS
CodeCommit, AWS CodeBuild, AWS CodeDeploy, and AWS CodePipeline as per your
project needs. You will also be able to develop and deploy applications within minutes
using AWS CodeStar from the wizard.

By the end of this book, you will be able to effectively build, deploy, and manage
applications on AWS along with scaling and securing applications with best practices and
troubleshooting tips.

Who this book is for
This book targets developers who would like to build and manage web and mobile
applications and services on the AWS platform. If you are an architect, you will be able to
deep dive and use examples that can be readily applied to real-world scenarios. Some prior
programming experience is assumed, along with familiarity with cloud computing.

Preface

[2]

What this book covers
Chapter 1, AWS Tools and SDKs, introduces the AWS SDK and covers installation and the
programming languages that are supported. The reader will get hands-on experience of
creating an application. This chapter also covers SDKs for IoT devices and mobiles.

Chapter 2, Integrating Applications with AWS Services, covers how to integrate applications
with AWS services such as DynamoDB, Amazon Kinesis, AWS Lambda, Amazon SQS, and
Amazon SWF.

Chapter 3, Continuous Integration and Continuous Deployment Workflow, introduces the four
major phases in the release processes—Source, Build, Test, and Production.

Chapter 4, CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing, explains how to
apply AWS developer tools in your Continuous Integration (CI) and Continous
Deployment (CD) workflow.

Chapter 5, CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar, discusses other
AWS Code family tools such as AWS CodeDeploy, AWS CodePipeline, AWS CodeStar, and
AWS X-Ray.

Chapter 6, User Authentication with AWS Cognito, explains how to manage user
authentication with AWS Cognito and also covers AWS Cognito service, which is a simple
and secure user authentication for mobile and web applications.

Chapter 7, Evaluating the Best Architecture, covers traditional web hosting and web hosting
on the cloud using AWS discussing, the best architecture for applications.

Chapter 8, Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing, discusses
Amazon EC2 best practices and troubleshooting. The chapter also covers about Elastic Load
Balancing, auto-scaling, and fault-tolerant advanced topics. Finally, we will deploy an
example of a CI/CD application using Amazon EC2 instances.

Chapter 9, Amazon EC2 Container Service, covers Docker, container instances, clusters,
scheduling Ttsks, and Windows containers. Then, we will deploy an example of a CI/CD
application with Amazon EC2 container services.

Chapter 10, Amazon Lambda – AWS Serverless Architecture, goes into more detail more about
Microservices, Serverless Framework, how you can achieve serverless on the AWS platform
using AWS Lambda, and you will learn how to deploy applications with the AWS
Serverless Application Model (SAM).

Preface

[3]

To get the most out of this book
This book assumes that readers are already familiar with the basics of Amazon Web
Services (AWS) and have some development background. It explains readers about
Continuous Integration (CI) and Continuous Deployment (CD) and how they are achieved
on AWS using Developer tools. Readers will also learn about different architectures and
implement CI/CD on these architectures. Some of the troubleshooting and cost optimization
tips are really helpful to the users while using different AWS services. Users can use free-
tier cloud providers wherever possible; certain services might cost a small amount of
money.

From a hardware point of view, you can work on any modern computer running for any
operating system supported by AWS.

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[4]

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Expert- ​AWS- ​Development. In case there's an update to the code, it will be
updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​www. ​packtpub. ​com/ ​sites/ ​default/ ​files/
downloads/​ExpertAWSDevelopment_ ​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "You will see pom.xml file will be generated under ..\AWS SDK
Example\javamaven-demo folder."

A block of code is set as follows:

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk</artifactId>
 <version>1.11.106</version>
</dependency>

Any command-line input or output is written as follows:

mvn clean compile exec:java

https://github.com/PacktPublishing/Expert-AWS-Development
https://github.com/PacktPublishing/Expert-AWS-Development
https://github.com/PacktPublishing/Expert-AWS-Development
https://github.com/PacktPublishing/Expert-AWS-Development
https://github.com/PacktPublishing/Expert-AWS-Development
https://github.com/PacktPublishing/Expert-AWS-Development
https://github.com/PacktPublishing/Expert-AWS-Development
https://github.com/PacktPublishing/Expert-AWS-Development
https://github.com/PacktPublishing/Expert-AWS-Development
https://github.com/PacktPublishing/Expert-AWS-Development
https://github.com/PacktPublishing/Expert-AWS-Development
https://github.com/PacktPublishing/Expert-AWS-Development
https://github.com/PacktPublishing/Expert-AWS-Development
https://github.com/PacktPublishing/Expert-AWS-Development
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/ExpertAWSDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ExpertAWSDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ExpertAWSDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ExpertAWSDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ExpertAWSDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ExpertAWSDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ExpertAWSDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ExpertAWSDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ExpertAWSDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ExpertAWSDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ExpertAWSDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ExpertAWSDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ExpertAWSDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ExpertAWSDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ExpertAWSDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ExpertAWSDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ExpertAWSDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ExpertAWSDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ExpertAWSDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ExpertAWSDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ExpertAWSDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ExpertAWSDevelopment_ColorImages.pdf

Preface

[5]

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Once you click on Install New Software it will open Available Software dialog
box."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Preface

[6]

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

https://www.packtpub.com/

1
AWS Tools and SDKs

Most probably, if you are reading this book, you are a code-drink lover who is trying to
explore or probably using Amazon Web Services (AWS). AWS contains around 20
different kinds of category/product, which have 110+ services. In this chapter, we will
explore AWS tools and SDKs, which are under the Developer tools category of AWS
products.

In the software world, a software development kit is known as SDK. It includes software
development tools that allow you to create applications, software packages, frameworks,
computer systems, gaming consoles, hardware platforms, operating systems, or similar
kinds of software/hardware development platforms. Some SDKs are useful for developing
platform-specific applications; for example, for Android applications on Java, you need
the Java Development Kit (JDK) and for iOS applications, you need the iOS SDK. This is
the basic idea of SDKs.

AWS also provides primary developer tools, command-line tools, toolkits, and SDKs to
develop and manage AWS applications. It provides a variety of tools and SDKs as per the
programming knowledge and project needs. With the help of these tools and SDKs, you can
quickly and easily build and manage great applications on the AWS Cloud. This chapter
will show you how to install and use these SDKs for different programming languages.

By the end of this chapter, you will understand how to install AWS SDKs and use them for
development in different programming languages.

AWS Tools and SDKs Chapter 1

[8]

This chapter will cover the following topics:

Brief introduction to AWS tools and SDKs
AWS SDK for Java
AWS SDK for Java using Apache Maven
Configuring an SDK as a Maven dependency
AWS SDK for Java using Gradle
AWS SDK for Java using Eclipse IDE
AWS SDK for Node.js

Brief introduction to AWS tools and SDKs
As we discussed in the introduction, AWS provides developer and command-line tools,
toolkits, and SDKs to develop and manage AWS applications. Currently, AWS provides
nine SDKs for different programming languages, six SDKs for IoT devices, and five SDKs
for mobile devices. Let's take a brief look at this:

Developer tools: Developer tools are used to store source code securely and
version-control it. They also help with build automation and testing and
deploying applications to AWS or on-premise. They include the AWS
CodeCommit, AWS CodePipeline, AWS CodeBuild, and AWS CodeDeploy
services. We will cover these in Chapter 4, CI/CD in AWS Part 1 – CodeCommit,
CodeBuild, and Testing and Chapter 5, CI/CD in AWS Part 2 – CodeDeploy,
CodePipeline, and CodeStar.
SDKs: They provide APIs for programming languages, IoT, and mobile devices.
IDE toolkits: Cloud tools which can integrate to your integrated development
environment to speed up your AWS development.
Command line: This is used to control AWS services from the command line and
create scripts for automated service management.
Serverless development: Serverless applications built on AWS Lambda can test
and deploy using AWS Serverless Application Model (SAM) and SAM Local.
We will cover Amazon Lambda in Chapter 10, Amazon Lambda – AWS Serverless
Architecture.

AWS provides SDKs for the different languages and hardware devices to connect AWS IoT
and mobile devices.

AWS Tools and SDKs Chapter 1

[9]

The following are the different kinds of SDK. In this chapter, we will cover two
programming language SDKs, Java and Node.js:

AWS SDK for Java
Let's start with the Java SDK. This SDK helps to minimize the complexity and provision to
coding using Java APIs for AWS Services such as Amazon EC2, Amazon DynamoDB,
Amazon S3, and many more. You can download a single package from the AWS website
which includes the AWS Java library and code samples with documentation.

Currently, you can download the AWS SDK for Java v1.11.x code base and AWS has
recently launched an AWS SDK for Java v2.0, which is major code change. This version is
built on Java 8. It has added features such as non-blocking I/O and a pluggable API layer
(by default, it will use Apache but you can change this as per your project needs). In this
version, you can see some API changes:

Client builders are the only way to create the client services, which means the
clients are immutable after creation
All Plain Old Java Objects (POJOs) are immutable and must be created from the
builder
Many region classes such as Region, Regions, and RegionUtils are merged
into a single Region class

AWS Tools and SDKs Chapter 1

[10]

This AWS SDK for Java v2.0 is a developer preview version and not
recommended for production use.

Let's explore how to install, set up, and use AWS SDK for Java.

 You need to set up AWS SDK for Java on your machine to use in your project. Please
perform the following steps to set up the environment and run the sample code in Java
using the AWS SDK:

AWS account setup and IAM user creation: You have to set up an AWS account1.
and credentials to use AWS SDK. To increase the level of security for your AWS
account, it is always preferable to create an IAM user. Use the created IAM user
instead of the root user. Once you create an IAM user, you have to create an
access key. You can download or view the access key ID and secret access key in
the resulting dialog box. It's always best practice to download and store them in
your local environment.
AWS credentials and region setup: For your local application development, you2.
need to set up credentials and regions.

The AWS credentials profile file is located in your filesystem. It should be at the
following path:

For Linux, macOS, or Unix: ~/.aws/credentials
For Windows: C:\Users\USERNAME\.aws\credentials

The file format should be as follows:

[default]
aws_access_key_id = downloaded_access_key_id
aws_secret_access_key = downloaded_secret_access_key

AWS Tools and SDKs Chapter 1

[11]

Another alternative is to set up AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY environment variables. Now, replace your AWS access
key ID and secret access key for the values of downloaded_access_key_id and
downloaded_secret_access_key.

The AWS region configuration file is located in your filesystem. It should be at the
following path:

For Linux, macOS, or Unix: ~/.aws/config
For Windows: C:\Users\USERNAME\.aws\config

This file format should be as follows:

[default]
region = your_region_name

Now, replace your AWS region for the value or region. Another alternative is you
can set up AWS_REGION as an environment variable.

Java Development Environment: JDK 6.0 or later versions are required for the
AWS SDK. The latest JDK versions are available for download from the Oracle
website. J2SE 6.0 does not support SHA 256-signed SSL certificates, which are
required for all HTTP connections with AWS after September 2015. You can use
J2SE7.0 or newer versions, which are not affected by the certificate issue.

You can use different methods to include the AWS SDK for your Java project. We
will explore all methods in this chapter:

Apache Maven: You can use specific SDK components or the full
SDK with the help of Apache Maven.
Gradle: Maven Bill of Materials (BOM) in a Gradle project can be
used to automatically manage the dependency for your project.
Eclipse IDE: The AWS toolkit can be integrated into an existing
Eclipse IDE. It will automatically download, install, and update the
Java SDK with a few settings.

AWS Tools and SDKs Chapter 1

[12]

AWS SDK for Java using Apache Maven
Please perform the following steps to include AWS SDK for Java using Apache Maven.

Assuming that you have already installed Maven in your machine, create a new1.
folder called AWS SDK Example or any name. Go to this folder and execute the
following command to set up the environment:

mvn archetype:generate -
DarchetypeGroupId=org.apache.maven.archetypes -
DarchetypeArtifactId=maven-archetype-quickstart

After it has successfully executed, you will see the following folder structure2.
under the AWS SDK Example folder:

AWS Tools and SDKs Chapter 1

[13]

You will see the pom.xml file generated under the ..\AWS SDK Example\java-
maven-demo folder.

Configuring an SDK as a Maven dependency
Please perform the following steps to configure AWS SDK as Maven dependency.

To add AWS SDK for Java in your project, you need to add the dependency to1.
the pom.xml file. From SDK version 1.9.*, you can import single or individual
components. If you want to add the entire SDK as a dependency, add the
following code in the <dependency> tag in the pom.xml file:

 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk</artifactId>
 <version>1.11.106</version>
 </dependency>

If you are using SDK Version 1.9.* or above, you can import many individual2.
components, such as EC2, S3, CodeCommit, or CodeDeploy:

 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-s3</artifactId>
 </dependency>

AWS Tools and SDKs Chapter 1

[14]

After setting up the pom.xml file, you can build your project with the mvn3.
package command. It will generate a Java Archive (JAR) file in the target
directory after successful execution:

Now you need to add the following code in the pom.xml file to connect with the4.
AWS SDK. You have to mention your main Java class under the Configuration
| mainClass tag. We will create the S3MavenExample.java file in the next step:

<build>
 <resources>
 <resource>
 <directory>${env.HOME}/.aws/</directory>
 </resource>
 </resources>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>

AWS Tools and SDKs Chapter 1

[15]

 <artifactId>exec-maven-plugin</artifactId>
 <version>1.2.1</version>
 <executions>
 <execution>
 <goals>
 <goal>java</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
<mainClass>com.packt.example.S3MavenExample</mainClass>
 </configuration>
 </plugin>
 </plugins>
 </build>

Let's create the S3MavenExample.java file in the com/packt/example package.5.
We are going to create an S3 bucket as per the specific region with a random
number generator, prefix it with s3-maven-bucket-, and then delete the bucket:

import java.util.UUID;
import com.amazonaws.regions.Region;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3Client;

You have imported UUID to generate the pseudo random number. You are6.
importing Region and Regions to create the bucket in a specific region, and
AmazonS3 and AmazonS3Client to access the AWS S3 services:

AmazonS3 s3 = new AmazonS3Client();
Region s3Region = Region.getRegion(Regions.AP_SOUTHEAST_1);
s3.setRegion(s3Region);

Here you are creating an S3 client and specifying the specific region where it will7.
create the bucket:

If you do not specify any region, it will create it at US East (N. Virginia).
This means the default region is US East (N. Virginia).

String bucketName = "s3-maven-bucket-" + UUID.randomUUID();

AWS Tools and SDKs Chapter 1

[16]

Here you are creating the s3-maven-bucket- prefix with some random UUID:8.

s3.createBucket(bucketName);

To create the bucket, you can use createBucket() method. You have to pass9.
the bucket name as a parameter in this method:

s3.deleteBucket(bucketName);

To delete the bucket, you can use the deleteBucket() method. You have to10.
pass the bucket name as a parameter in this method. After creating the Java file,
execute the following command:

mvn clean compile exec:java

It will create and delete the bucket as per the specified regions:

If you have completed this step and you can see the creation and deletion of the
bucket, it means you have successfully completed AWS SDK for Java using Maven in
your project.

AWS Tools and SDKs Chapter 1

[17]

AWS SDK for Java using Gradle
Please perform the following steps to include AWS SDK for Java using Gradle:

Assuming that you have already installed Gradle in your machine, create a new1.
folder called java-gradle-demo or any other name. Go to this folder and copy
the following files:

The gradle folder: Contains necessary files for the wrapper
build.gradle: Gradle build file
gradlew: Gradle startup script for Unix
gradlew.bat: Gradle startup script for Windows:

Now execute the following command:2.

gradlew.bat

After completing this execution, you can see the .gradle folder.

AWS Tools and SDKs Chapter 1

[18]

Now you need to update your build.gradlew file to connect with AWS:3.

apply plugin: 'java'
apply plugin: 'application'

mainClassName="com.packt.example.S3GradleExample"
repositories {
 mavenCentral()
}
dependencies {
 compile 'com.amazonaws:aws-java-sdk:1.9.6'
}

Let's create a S3GradleExample.java file under the com.packt.example4.
folder. This is the same file as S3MavenExample.java:

package com.packt.example;
import java.util.UUID;
import com.amazonaws.regions.Region;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3Client;
public class S3GradleExample {
 public static void main(String[] args) {
 AmazonS3 s3 = new AmazonS3Client();
 Region s3Region = Region.getRegion(Regions.AP_SOUTHEAST_1);
 s3.setRegion(s3Region);
 String bucketName = "s3-gradle-bucket-" + UUID.randomUUID();
 System.out.println("Amazon S3 will create/delete bucket");
 // Create a new bucket
 System.out.println("Creating bucket " + bucketName + "\n");
 s3.createBucket(bucketName);
 // Delete a bucket.
 System.out.println("Deleting bucket " + bucketName + "\n");
 s3.deleteBucket(bucketName);
 }
}

After creating the Java file, execute the following command:5.

gradlew clean build run

AWS Tools and SDKs Chapter 1

[19]

It will create and delete the bucket as per the specified regions:

AWS SDK for Java using Eclipse IDE
I am assuming that you have already installed Eclipse 4.4 (Luna) or a higher version on
your machine as the AWS toolkit supports that.

There are two ways to install an AWS toolkit in your IDE:

Click on Help | Install New Software… and install
Click on Help | Eclipse Marketplace, search for AWS, and install

AWS Tools and SDKs Chapter 1

[20]

We will install using the first method. Now please perform the following steps and refer to
the following screenshot:

Once you click on Install New Software, it will open the Available Software1.
dialog box.
In this dialog box, you have to click on Add to add the AWS toolkit.2.
 It will open the Add Repository dialog box.3.
 In this dialog box, add the Name and Location as4.
https://aws.amazon.com/eclipse.
 Click on OK.5.

AWS Tools and SDKs Chapter 1

[21]

On the next page, you will see all available AWS tools. You can select AWS Core6.
Management Tools and other tools as per your project requirements:

AWS Tools and SDKs Chapter 1

[22]

A preview page will display to confirm the installation details. Click on Next and7.
you will see the Review License page, where you click Accept and Finish to
complete the AWS installation:

AWS Tools and SDKs Chapter 1

[23]

After successful installation, your IDE will restart. After restarting, you will see8.
the AWS toolkit icon in the toolbar:

AWS Tools and SDKs Chapter 1

[24]

Now let's create a sample AWS Java project. When you click New AWS Java9.
Project…., you will see the following screen. You need to add the necessary
details for the project. Here I have used S3Demo as my Project name,
com.packt as my Group ID, and examples as my Artifact ID. I have selected
Amazon S3 Sample from the Java samples:

AWS Tools and SDKs Chapter 1

[25]

If you want to add new AWS accounts, click on the Configure AWS accounts…10.
link. You can add the credentials in two ways:

Add Profile Name, Access Key ID, and Secret Access Key under
the Profile Details screen.
You can specify your credentials file path or browse to your credentials
file. Once you have added that, you can select Apply and Close:

AWS Tools and SDKs Chapter 1

[26]

Now it will generate the projects and create the necessary files. You can see the11.
following screen with generated files. It will generate a S3Sample.java file. You
can right-click on this file and select Run As | Java Application. It will create the
bucket, list the bucket, upload a new object to S3, download an object, list an
object, delete an object, and delete the bucket:

So far, you have learned how to add the AWS Java toolkit into your project using Maven,
Gradle, and Eclipse IDE. Now we will see how to add the AWS SDK for Node.js into your
project.

AWS Tools and SDKs Chapter 1

[27]

AWS SDK for Node.js
Node.js is a free, open source, cross-platform framework. It is used to execute JavaScript
code on the server side. In Node.js, you can use AWS SDK for JavaScript. This SDK will
help to remove the complexity of coding by providing JavaScript objects to use the AWS
services. A single downloaded package includes the AWS JavaScript library as well
documentation.

You can install AWS SDK for Node.js in two ways:

From GitHub: You can get the source code from https:/ ​/​github. ​com/ ​aws/​aws-
sdk-​js

From Node.js Package Manager (npm): You can install AWS SDK from the
Node.js package manager

Let's install the AWS SDK package and create a sample application to create and delete a
bucket on S3 using the following steps:

You can download (https:/ ​/ ​nodejs. ​org/ ​en/​download/ ​) and install Node.js If1.
you haven't already installed it. Once you have installed Node.js, you can
open the Node.js command prompt from (Run | Node.js command prompt in
Windows.
You need to create a package.json file to mention the required dependency to2.
install AWS SDK and UUID. We need aws-sdk to install the required Node
modules for AWS services and a UUID to create a pseudo random number:

package.json
{
 "dependencies": {
 "aws-sdk": ">= 2.0.9",
 "uuid": ">= 1.4.1"
 }
}

https://github.com/aws/aws-sdk-js
https://github.com/aws/aws-sdk-js
https://github.com/aws/aws-sdk-js
https://github.com/aws/aws-sdk-js
https://github.com/aws/aws-sdk-js
https://github.com/aws/aws-sdk-js
https://github.com/aws/aws-sdk-js
https://github.com/aws/aws-sdk-js
https://github.com/aws/aws-sdk-js
https://github.com/aws/aws-sdk-js
https://github.com/aws/aws-sdk-js
https://github.com/aws/aws-sdk-js
https://github.com/aws/aws-sdk-js
https://github.com/aws/aws-sdk-js
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/

AWS Tools and SDKs Chapter 1

[28]

Now open the command prompt and execute the following command:3.

npm install aws-sdk

It will create a node_modules folder and install AWS SDK for Node.js. Now you4.
need to set the credentials in the AWS credentials profile file on your local
system, located at the following:

For Linux, macOS, or Unix: ~/.aws/credentials
For Windows: C:\Users\USERNAME\.aws\credentials

The file format should be as follows:5.

[default]
aws_access_key_id = downloaded_access_key_id
aws_secret_access_key = downloaded_secret_access_key

AWS Tools and SDKs Chapter 1

[29]

Now, replace your AWS credentials values with the values6.
downloaded_access_key_id and downloaded_secret_access_key.
Now let's create a S3Example.js file which will connect to AWS and create and7.
delete the bucket on S3:

var AWS = require('aws-sdk');
var uuid = require('uuid');

First, you have to create variable such as AWS and UUID to load SDK for8.
JavaScript:

var s3 = new AWS.S3();
var bucketName = 'node-sdk-sample-' + uuid.v4();
var params={Bucket: bucketName}

Here you are creating s3 as an S3 service object, bucketname with node-sdk-
sample as the prefix with a random number, and params as the parameters to call
the bucket:

s3.createBucket(params, function(err, data) {
 if (err) console.log(err, err.stack); // an error occurred
 else console.log("Successfully Created Bucket: "+bucketName);
 // successful response
 });

The preceding method is used to create the bucket with parameters and callback
functions:

s3.waitFor('bucketExists', params, function(err, data) {
 if (err) console.log(err, err.stack); // an error occurred
 else {
 s3.deleteBucket(params, function(err, data) {
 if (err) console.log(err, err.stack); // an error occurred
 else console.log("Successfully Deleted
Bucket:"+bucketName);
 // successful response
 });
 }
});

Here it will check whether the bucket is exists or not. If it exists then it will delete
the bucket. If it is not exist than it is trying to delete the bucket which is not
created yet. In that case, you will get an error.

AWS Tools and SDKs Chapter 1

[30]

You can execute the file with node S3Example.js and you can see that it will9.
create and delete the bucket:

Previously, we discussed AWS SDKs for different programming languages and we have
covered Java and Node.js with setup and examples. Now we will see how you can set up
SDKs on IoT devices.

AWS SDKs for IoT devices
IoT is the Internet of Things, where the internet is connected with things such as software,
hardware, physical devices, home appliances, vehicles, or any kind of sensor, actuator, or
network, and exchanges data between them. In simple terms, your thing or device will
collect, sense, and act on data and send it to an other device from the internet. These
connected devices are communicating with each other from various technologies and flow
data autonomously. IoT devices can be useful for consumer applications, enterprise
applications, smart homes, agriculture, and many industries.

AWS provides different kinds of SDK for the IoT to connect securely and seamlessly to your
hardware devices.

The following are the different kinds of AWS SDK:

AWS Tools and SDKs Chapter 1

[31]

AWS SDKs for mobile devices
AWS provides different kinds of SDKs to connect securely and seamlessly to your mobile
devices.

The following are the different kinds of AWS SDKs. In this chapter, we will cover AWS
SDK for Android:

AWS Mobile SDK for Android
For Android, AWS provides an open source SDK that is distributed under an Apache
license. This will provide libraries, code examples, and documentation to develop mobile
applications using AWS.

Currently, AWS supports the following services for AWS Mobile SDK for Android:

Amazon Cognito Identity:
Controls authentication and provides temporary credentials to
connect devices and/or other untrusted environments
Saves user data and synchronizes it
Manages identity throughout the lifetime of an application
We will discuss this topic in more detail in Chapter 6, User
Authentication with AWS Cognito

Amazon Cognito Sync:
Enables application-specific data to sync on cross-devices
Syncs user data across the web and devices
Caches data locally so the device can access data offline; it can sync
when the device is online
Notifies other devices if sync push is set up

Mobile Analytics:
Collects, analyzes, visualizes, and understand the apps
Generates reports for users, sessions, in-app revenues, and events
Filters reports by data range and platform

AWS Tools and SDKs Chapter 1

[32]

Amazon S3:
Mobile apps can directly access Amazon S3 to store data
Provides Transfer Utility/Transfer Manager (Older Version) to
consume S3 services

DynamoDB:
SDK contains a high-level library to access and work with
DynamoDB Object Mapper
Can perform CRUD operations such as Create, Read, Update, and
Delete for client-class

Amazon Kinesis:
Provides simple, high-level design
Stores real-time data on disk and sends it all together to save
battery life

Lambda:
Lambda function receives app and device data to create a
personalized and rich app experience

Amazon Lex:
You can integrate a chat box on mobile devices

Amazon Polly:
Mobile SDK provides add text to speech integration for Amazon
Polly

Amazon Pinpoint:
Integrates Amazon Pinpoint to send push notification campaigns
from Android apps

Currently, Android 2.3.3 (API level 10) or higher can use AWS Mobile
SDKs.

Now let's understand how to set up the AWS Mobile SDK and then we will see an example
with Amazon S3.

The AWS Mobile SDK is available at the following two resources for download:

http:/​/​sdk- ​for- ​android. ​amazonwebservices. ​com/ ​latest/ ​aws-​android- ​sdk.
zip

https:/​/ ​github. ​com/ ​aws/ ​aws- ​sdk-​android

http://sdk-for-android.amazonwebservices.com/latest/aws-android-sdk.zip
http://sdk-for-android.amazonwebservices.com/latest/aws-android-sdk.zip
http://sdk-for-android.amazonwebservices.com/latest/aws-android-sdk.zip
http://sdk-for-android.amazonwebservices.com/latest/aws-android-sdk.zip
http://sdk-for-android.amazonwebservices.com/latest/aws-android-sdk.zip
http://sdk-for-android.amazonwebservices.com/latest/aws-android-sdk.zip
http://sdk-for-android.amazonwebservices.com/latest/aws-android-sdk.zip
http://sdk-for-android.amazonwebservices.com/latest/aws-android-sdk.zip
http://sdk-for-android.amazonwebservices.com/latest/aws-android-sdk.zip
http://sdk-for-android.amazonwebservices.com/latest/aws-android-sdk.zip
http://sdk-for-android.amazonwebservices.com/latest/aws-android-sdk.zip
http://sdk-for-android.amazonwebservices.com/latest/aws-android-sdk.zip
http://sdk-for-android.amazonwebservices.com/latest/aws-android-sdk.zip
http://sdk-for-android.amazonwebservices.com/latest/aws-android-sdk.zip
http://sdk-for-android.amazonwebservices.com/latest/aws-android-sdk.zip
http://sdk-for-android.amazonwebservices.com/latest/aws-android-sdk.zip
http://sdk-for-android.amazonwebservices.com/latest/aws-android-sdk.zip
http://sdk-for-android.amazonwebservices.com/latest/aws-android-sdk.zip
http://sdk-for-android.amazonwebservices.com/latest/aws-android-sdk.zip
http://sdk-for-android.amazonwebservices.com/latest/aws-android-sdk.zip
http://sdk-for-android.amazonwebservices.com/latest/aws-android-sdk.zip
http://sdk-for-android.amazonwebservices.com/latest/aws-android-sdk.zip
https://github.com/aws/aws-sdk-android
https://github.com/aws/aws-sdk-android
https://github.com/aws/aws-sdk-android
https://github.com/aws/aws-sdk-android
https://github.com/aws/aws-sdk-android
https://github.com/aws/aws-sdk-android
https://github.com/aws/aws-sdk-android
https://github.com/aws/aws-sdk-android
https://github.com/aws/aws-sdk-android
https://github.com/aws/aws-sdk-android
https://github.com/aws/aws-sdk-android
https://github.com/aws/aws-sdk-android
https://github.com/aws/aws-sdk-android
https://github.com/aws/aws-sdk-android
https://github.com/aws/aws-sdk-android

AWS Tools and SDKs Chapter 1

[33]

This SDK includes class libraries, code example, and documentation:

Class libraries will include the Java Archive Files (.jar) files for the AWS
services. You can include the class for the service which you are using in your
applications.
The code example provides you with an example of using the service in your
application using class libraries.
Documentation is reference material for the use of AWS Mobile SDK for Android.

AWS Secure Token Service (STS) and Amazon Cognito Identity are
bundled with the AWS Mobile SDK core library. You will get a compile-
time error if you include it as a separate JAR file.

In the next section, you will see how to set up AWS Mobile SDK for Android.

AWS Mobile SDK setup for Android
With the help of the AWS Mobile SDK, you can create a new project or update an existing
project.

The following are prerequisites:

AWS account
Android 2.3.3 (API level 10 or higher)
Android Studio (https:/ ​/​developer. ​android. ​com/ ​studio/ ​index. ​html)

You need to do the following configuration:

Configure AWS Mobile SDK for Android
Set permissions in the Android manifest file
Use Amazon Cognito to set the AWS credentials

Now let's explore the entire configuration step by step and make changes accordingly.

https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html

AWS Tools and SDKs Chapter 1

[34]

Configuring AWS Mobile SDK for Android
Let's start configuring AWS Mobile SDK for Android in the following three ways:

Using Maven: Apache Maven is a build automation and dependency
management tool, which contains a pom.xml file for configurations. It is used to
mention the specific Amazon web service which you will use in the project
instead of the entire SDK.

Amazon Mobile SDK for Android v 2.1.3 or above supports Maven.

In the pom.xml file, you have to add a <dependency> element in which you have
to add three subelements such as groupid, artifactid, and version.

groupid will be the same as com.amazonaws for all AWS services.

In artifactid, you have to mention the appropriate service which you are using
in your applications.

In version, you have to mention the acceptable AWS Mobile SDK version for
Android for the given dependency:

AWS Tools and SDKs Chapter 1

[35]

Using Gradle: When using Android Studio, you can add additional individual
services with aws-android-sdk-core services as a dependency in your
build.gradle file:

Avoid + in version numbers. Use com.amazonaws:aws-android-sdk-
core:#.#.# instead of com.amazonaws:aws-android-sdk-
core:#.#.+.

Import JAR files: As mentioned previously, you can download the AWS Mobile
SDK from the AWS website or GitHub and use it into your project.

In Android Studio, you can add the AWS Mobile SDK JAR file in your application
by dragging it into the Project View. You can also add the individual JAR file for
your services. It will add it to the build path automatically. Then use the Gradle
file to sync your project.

Set a permission in the Android manifest file. In your
AndroidManifest.xml file, you need to set the following permission:
<uses-permission

android:name="android.permission.INTERNET" />.

Using Amazon Cognito to set AWS credentials
You have to use Amazon Cognito Identity Provider to obtain AWS credentials. Those
credentials you can use in your mobile application to access AWS services. You can also set
user-specific permissions to access particular AWS services. You don't have to embed
personal credentials. Amazon Cognito will be covered in more detail in Chapter 6, User
Authentication with AWS Cognito.

AWS Tools and SDKs Chapter 1

[36]

So far, we have covered AWS SDK for IoT and AWS Mobile SDK for Android. Let's explore
an example for the Transfer Utility to consume Amazon S3 services. Here we will upload a
file from a mobile device and download a file to a mobile device. We will use Android
Studio, Amazon Cognito, Amazon S3, and Amazon IAM. Please perform the following
steps:

Start Android Studio and create a new project. Add the required information and1.
click Next:

AWS Tools and SDKs Chapter 1

[37]

Select the Target Android Devices. Here I have selected Phone and Tablet and2.
the API version is 15, which supports 100% of devices:

AWS Tools and SDKs Chapter 1

[38]

Select the activity as per your project needs:3.

AWS Tools and SDKs Chapter 1

[39]

In the Configure Activity screen, you can change the Activity Name and Layout4.
Name or you can keep them as they are:

AWS Tools and SDKs Chapter 1

[40]

You can see the following screen after successfully creating the project:5.

Open the app/build.gradle file and add the following modules as6.
dependencies for the AWS Mobile SDK:

compile 'com.amazonaws:aws-android-sdk-core:2.6.6'
compile 'com.amazonaws:aws-android-sdk-cognito:2.6.6'
compile 'com.amazonaws:aws-android-sdk-s3:2.6.6'

Amazon S3 will transfer files using the TranferUtility service. For that, open7.
the app/manifests/AndroidManifest.xml file and add
the TransferUtility service in the application:

<service
android:name="com.amazonaws.mobileconnectors.s3.transferutility.Tra
nsferService"
android:enabled="true" />

AWS Tools and SDKs Chapter 1

[41]

Add the following permissions under the manifest tag, which will give you8.
permission to upload and download files from the internet through Android
devices:

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission
android:name="android.permission.ACCESS_NETWORK_STATE" />
<uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
<uses-permission
android:name="android.permission.READ_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.ACTION_DOWN"/>
<uses-permission
android:name="android.permission.SMARTBONDING_FEATURE_ENABLED" />

To access Amazon services from your mobile applications, you have to configure9.
the AWS credentials. Amazon Cognito is used as the credential provider. You
have to create the identity pool under the Federated Identities in Amazon
Cognito and provide the IAM role. You have to create two roles, one for
authenticated users and another for unauthenticated users, and provide the
following policy. We will cover user authentication with Amazon Cognito in
more detail in Chapter 6, User Authentication with AWS Cognito:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "Stmt1510936216000",
 "Effect": "Allow",
 "Action": ["s3:*"],
 "Resource": ["arn:aws:s3:::<Bucket_Name>/*"]
 }]
}

To enable file upload and download to and from S3, we need to create a button10.
and add an onClick event. You have to add the following code into your
acitvity_main.xml file:

<Button
 android:id="@+id/upload_file"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="File Upload to S3"
 android:onClick="uploadFile"/>

<Button
 android:id="@+id/downaload_file"

AWS Tools and SDKs Chapter 1

[42]

 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="File Download from S3"
 app:layout_constraintLeft_toRightOf="@id/upload_file"
 android:onClick="downloadFile"/>

You need to add following imports in the MainActivity.java file to use the11.
Amazon Cognito, Amazon S3, and TransferUtility services:

import com.amazonaws.auth.CognitoCachingCredentialsProvider;
import
com.amazonaws.mobileconnectors.s3.transferutility.TransferObserver;
import
com.amazonaws.mobileconnectors.s3.transferutility.TransferUtility;
import com.amazonaws.regions.Region;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3Client;

You need to create an instance of S3 and TransferUtility. You need to specify12.
the file path for upload and download:

AmazonS3 s3Client;
TransferUtility transferUtility;
File uploadFilePath = new File(<FILE_UPLOAD_PATH>);
File downloadFilePath = new File(<FILE_DOWNLOAD_PATH);

The onCreate method will initialize the activity. Add the following method for13.
Cognito credentials and Transfer Utility:

getCognitoCredentials();
createTransferUtility();

The following method will create Cognito credential providers. You can pass the14.
Android context, Identity Pool, and region to create the instance:

Public void getCognitoCredentials(){
 CognitoCachingCredentialsProvider credentials

 = new CognitoCachingCredentialsProvider(
 getApplicationContext(),
 <Identity_Pool_ID>,
 Regions.<Your_Cognito_IdentityPool_Region>
);
 createS3Client(credentials);
}

AWS Tools and SDKs Chapter 1

[43]

The following method will create the Amazon S3 client where you have to pass15.
Cognito credentials and set your bucket region:

public void createS3Client(CognitoCachingCredentialsProvider
credentials){
 s3 = new AmazonS3Client(credentials);
 s3.setRegion(Region.getRegion(Regions.US_EAST_1));
}

The following method will create a Transfer Utility instance. Note that16.
TransferUtility is used to upload a single file in multiple parts using multiple
threads. It is useful for uploading large files mentioning the file path than stream:

public void createTransferUtility(){
 transferUtility = new TransferUtility(s3,
getApplicationContext());
}

The following method will be used to upload files from transferUtility's17.
upload. You have to specify the bucket name, filename, and upload file path:

public void uploadFile(View view){

 TransferObserver transferObserver = transferUtility.upload(
 "<S3_Bucket_Name>",
 "<Upload_File_Key_Name>",
 uploadFilePath

);
}

The following method will be used to download files from transferUtility's18.
download. You have to specify the bucket name, filename, and download file
path:

public void downloadFile(View view){

 TransferObserver transferObserver = transferUtility.download(
 "<S3_Bucket_Name>",

 "<Download_File_Key_Name>",
 downloadFilePath
);
}

AWS Tools and SDKs Chapter 1

[44]

You will see the following screen on your mobile device after successfully19.
running the application:

When you tab on FILE UPLOAD TO S3, if the file is uploaded successfully, you
can see it in your S3 bucket from the console:

 When you click on FILE DOWNLOAD FROM S3, if the file is downloaded
successfully, you can see it in your folder or path:

Summary
So far, we have completed the setup of AWS SDK on Java and Node.js with examples. This
is a good starting point for developers who have a limited knowledge of AWS SDKs.

In the next chapter, you will see how to integrate applications with relevant AWS services
such as DynamoDB, Amazon Kinesis, AWS Lambda, Amazon SQS, and Amazon SWF.

2
Integrating Applications with

AWS Services
Sometimes you have to integrate your existing on-premise resources with cloud services.
This is known as the hybrid cloud. It will help you achieve business goals without investing
more in on-premises hardware and software. AWS provides hybrid capabilities for
networking, storage, database, application development, and management tools for secure
and seamless integration.

In this chapter, we will integrate applications with various AWS services such as Amazon
DynamoDB, Amazon Kinesis, Amazon Lambda, Amazon SQS, and Amazon SWF, which
are highly available and fully managed by AWS.

Amazon DynamoDB is a fast, fully managed, highly available, and scalable NoSQL
database service from AWS. DynamoDB uses key-value and document store data models.
Amazon Kinesis is used to collect real-time data to process and analyze it. Amazon Kinesis
comes with different capabilities such as Amazon Kinesis Firehose to load the streaming
data to AWS, Amazon Kinesis Stream to process and analyze the real-time streaming data,
and Amazon Kinesis Analytics to analyze the real-time streaming of data with the help of
standard SQLs.

Amazon Simple Queue Service (SQS) is a fully managed, highly scalable hosted queue
service. It is used to store messages in transit between systems. Amazon Simple Workflow
Service (SWF) is a workflow service to coordinate work across different distributed
components. It will help developers to do asynchronous programming for application
development.

By the end of this chapter, you will know how to integrate applications with relative AWS
services and best practices.

Integrating Applications with AWS Services Chapter 2

[46]

In this chapter, we will cover the following topics:

Amazon DynamoDB
Amazon Kinesis
Amazon SQS
Amazon SWF

Amazon DynamoDB
The Amazon DynamoDB service falls under the Database category. It is a fast NoSQL
database service from Amazon. It is highly durable as it will replicate data across three
distinct geographical facilities in AWS regions. It is used for applications which need
consistent, single-digit millisecond latency. Its reliable performance and flexible data
models make it suitable for web, mobile, gaming, and IoT applications. DynamoDB will
remove the burden of administrating operating and scaling databases. It will take care of
software patching, hardware provisioning, cluster scaling, setup, configuration, and
replication. You can create a database table and store and retrieve any amount and variety
of data. It will delete expired data automatically from the table. It will help to reduce the
usage storage and cost of storing data which is no longer needed.

Amazon DynamoDB Accelerator (DAX) is a highly available, fully managed, and in-
memory cache. For millions of requests per second, it reduces the response time from
milliseconds to microseconds.

DynamoDB is allowed to store up to 400 KB of large text and binary objects. It uses SSD
storage to provide high I/O performance.

We will cover the following topics with regard to DynamoDB:

Integrating DynamoDB into an application
Low-level interface
Document interface
Object persistence (high-level) interface
DynamoDB low-level API
Troubleshooting in Amazon DynamoDB

Integrating Applications with AWS Services Chapter 2

[47]

Integrating DynamoDB into an application
The following diagram provides a high-level overview of integration between your
application and DynamoDB:

Please perform the following steps to understand this integration:

Your application in your programming language which is using an AWS SDK.1.
DynamoDB can work with one or more programmatic interfaces provided by2.
AWS SDK.
From your programming language, AWS SDK will constructs an HTTP or HTTPS3.
request with a DynamoDB low-level API.
The AWS SDK will send a request to the DynamoDB endpoint.4.
DynamoDB will process the request and send the response back to the AWS SDK.5.
If the request is executed successfully, it will return HTTP 200 (OK) response
code. If the request is not successful, it will return HTTP error code and error
message.
The AWS SDK will process the response and send the result back to the6.
application.

Integrating Applications with AWS Services Chapter 2

[48]

The AWS SDK provides three kinds of interfaces to connect with DynamoDB. These
interfaces are as follows:

Low-level interface
Document interface
Object persistence (high-level) interface

Let's explore all three interfaces. The following diagram is the Movies table, which is
created in DynamoDB and used in all our examples:

Low-level interface
AWS SDK programming languages provide low-level interfaces for DynamoDB. These
SDKs provide methods that are similar to low-level DynamoDB API requests.

The following example uses the Java language for the low-level interface of AWS
SDKs. Here you can use Eclipse IDE for the example.

In this Java program, we request getItem from the Movies table, pass the movie name as
an attribute, and print the movie release year:

Let's create the MovieLowLevelExample file. We have to import a few classes to1.
work with the DynamoDB.

AmazonDynamoDBClient is used to create the DynamoDB client instance.
AttributeValue is used to construct the data. In AttributeValue, name is
datatype and value is data:

GetItemRequest is the input of GetItem
GetItemResult is the output of GetItem

The following code will create the dynamoDB client instance. You have to assign2.
the credentials and region to this instance:

Static AmazonDynamoDBClient dynamoDB;

Integrating Applications with AWS Services Chapter 2

[49]

In the code, we have created HashMap, passing the value parameter as3.
AttributeValue().withS(). It contains actual data and withS is the attribute
of String:

String tableName = "Movies";

HashMap<String, AttributeValue> key = new HashMap<String,
AttributeValue>();
key.put("name", new AttributeValue().withS("Airplane"));

GetItemRequest will create a request object, passing the table name and key as4.
a parameter. It is the input of GetItem:

GetItemRequest request = new GetItemRequest()
 .withTableName(tableName).withKey(key);

GetItemResult will create the result object. It is the output of getItem where5.
we are passing request as an input:

GetItemResult result = dynamoDB.getItem(request);

It will check the getItem null condition. If getItem is not null then create the6.
object for AttributeValue. It will get the year from the result object and create
an instance for yearObj. It will print the year value from yearObj:

if (result.getItem() != null) {
 AttributeValue yearObj = result.getItem().get("year");
 System.out.println("The movie Released in " + yearObj.getN());
} else {
System.out.println("No matching movie was found");
}

Document interface
This interface enables you to do Create, Read, Update, and Delete (CRUD) operations on
tables and indexes. The datatype will be implied with data from this interface and you do
not need to specify it.

Integrating Applications with AWS Services Chapter 2

[50]

The AWS SDKs for Java, Node.js, JavaScript, and .NET provides support
for document interfaces.

The following example uses the Java language for the document interface in AWS
SDKs. Here you can use the Eclipse IDE for the example.

In this Java program, we will create a table object from the Movies table, pass the movie
name as attribute, and print the movie release year.

We have to import a few classes. DynamoDB is the entry point to use this library in your
class. GetItemOutcomeis is used to get items from the DynamoDB table. Table is used to
get table details:

static AmazonDynamoDB client;

The preceding code will create the client instance. You have to assign the credentials and
region to this instance:

String tableName = "Movies";
DynamoDB docClient = new DynamoDB(client);
Table movieTable = docClient.getTable(tableName);

DynamoDB will create the instance of docClient by passing the client instance. It is the
entry point for the document interface library. This docClient instance will get the table
details by passing the tableName and assign it to the movieTable instance:

GetItemOutcome outcome = movieTable.getItemOutcome("name","Airplane");
int yearObj = outcome.getItem().getInt("year");
System.out.println("The movie was released in " + yearObj);

GetItemOutcome will create an outcome instance from movieTable by passing the name
as key and movie name as parameter. It will retrieve the item year from the outcome object
and store it into the yearObj object and print it:

Integrating Applications with AWS Services Chapter 2

[51]

Object persistence (high-level) interface
In the object persistence interface, you will not perform any CRUD operations directly on
the data; instead, you have to create objects which represent DynamoDB tables and indexes
and perform operations on those objects. It will allow you to write object-centric code and
not database-centric code.

The AWS SDKs for Java and .NET provide support for the object
persistence interface.

Let's create a DynamoDBMapper object in AWS SDK for Java. It will represent data in the
Movies table. This is the MovieObjectMapper.java class. Here you can use the Eclipse
IDE for the example.

You need to import a few classes for annotations. DynamoDBAttribute is applied to the
getter method. If it will apply to the class field then its getter and setter method must
be declared in the same class. The DynamoDBHashKey annotation marks property as the
hash key for the modeled class. The DynamoDBTable annotation marks DynamoDB as the
table name:

@DynamoDBTable(tableName="Movies")

It specifies the table name:

@DynamoDBHashKey(attributeName="name")
public String getName() { return name;}
public void setName(String name) {this.name = name;}

@DynamoDBAttribute(attributeName = "year")
public int getYear() { return year; }
public void setYear(int year) { this.year = year; }

In the preceding code, DynamoDBHashKey has been defined as the hash key for the name
attribute and its getter and setter methods. DynamoDBAttribute specifies the column
name and its getter and setter methods.

Now create MovieObjectPersistenceExample.java to retrieve the movie year:

static AmazonDynamoDB client;

Integrating Applications with AWS Services Chapter 2

[52]

The preceding code will create the client instance. You have to assign the credentials and
region to this instance. You need to import DynamoDBMapper, which will be used to fetch
the year from the Movies table:

DynamoDBMapper mapper = new DynamoDBMapper(client);
MovieObjectMapper movieObjectMapper = new MovieObjectMapper();
movieObjectMapper.setName("Airplane");

The mapper object will be created from DynamoDBMapper by passing the client.

The movieObjectMapper object will be created from the POJO class, which we created
earlier. In this object, set the movie name as the parameter:

MovieObjectMapper result = mapper.load(movieObjectMapper);
if (result != null) {
System.out.println("The song was released in "+ result.getYear());
}

Create the result object by calling DynamoDBMapper object's load method. If the result is not
null then it will print the year from the result's getYear() method.

DynamoDB low-level API
This API is a protocol-level interface which will convert every HTTP or HTTPS request into
the correct format with a valid digital signature. It uses JavaScript Object Notation (JSON)
as a transfer protocol. AWS SDK will construct requests on your behalf and it will help you
concentrate on the application/business logic.

The AWS SDK will send a request in JSON format to DynamoDB and DynamoDB will
respond in JSON format back to the AWS SDK API. DynamoDB will not persist data in
JSON format.

Troubleshooting in Amazon DynamoDB
The following are common problems and their solutions:

If error logging is not enabled then enable it and check error log messages.
Verify whether the DynamoDB table exists or not.
Verify the IAM role specified for DynamoDB and its access permissions.

Integrating Applications with AWS Services Chapter 2

[53]

AWS SDKs take care of propagating errors to your application for appropriate
actions. Like Java programs, you should write a try-catch block to handle the
error or exception.
If you are not using an AWS SDK then you need to parse the content of low-level
responses from DynamoDB.
A few exceptions are as follows:

AmazonServiceException: Client request sent to DynamoDB but
DynamoDB was unable to process it and returned an error
response
AmazonClientException: Client is unable to get a response or
parse the response from service
ResourceNotFoundException: Requested table doesn't exist or is
in CREATING state

Now let's move on to Amazon Kinesis, which will help to collect and process real-time
streaming data.

Amazon Kinesis
The Amazon Kinesis service is under the Analytics product category. This is a fully
managed, real-time, highly scalable service. This service is used to collect, load, process, and
analyze real-time massive-scale data. It can collect and process massive-scale data from
multiple sources in real time. You can easily send data to other AWS services such as
Amazon DynamoDB, AmazaonS3, and Amazon Redshift. You can ingest real-time data
such as application logs, website clickstream data, IoT data, and social stream data into
Amazon Kinesis. You can process and analyze data when it comes and respond
immediately instead of waiting to collect all data before the process begins.

We will cover the following topics:

Amazon Kinesis streams
Troubleshooting tips for Kinesis streams
Amazon Kinesis Firehose
Troubleshooting tips for Kinesis Firehose

Now let's explore an example of using Kinesis streams and Kinesis Firehose using AWS
SDK API for Java.

Integrating Applications with AWS Services Chapter 2

[54]

Amazon Kinesis streams
In this example, we will create the stream if it does not exist and then we will put the
records into the stream. Here you can use Eclipse IDE for the example.

You need to import a few classes. AmazonKinesis and AmazonKinesisClientBuilder
are used to create the Kinesis clients. CreateStreamRequest will help to create the stream.
DescribeStreamRequest will describe the stream request. PutRecordRequest will put
the request into the stream and PutRecordResult will print the resulting record.
ResourceNotFoundException will throw an exception when the stream does not exist.
StreamDescription will provide the stream description:

Static AmazonKinesis kinesisClient;

kinesisClient is the instance of AmazonKinesis. You have to assign the credentials and
region to this instance:

final String streamName = "MyExampleStream";
final Integer streamSize = 1;
DescribeStreamRequest describeStreamRequest = new
DescribeStreamRequest().withStreamName(streamName);

Here you are creating an instance of describeStreamRequest. For that, you will pass the
streamNameas parameter to the withStreamName() method:

StreamDescription streamDescription =
kinesisClient.describeStream(describeStreamRequest).getStreamDescription();

It will create an instance of streamDescription. You can get information such as the
stream name, stream status, and shards from this instance:

CreateStreamRequest createStreamRequest = new CreateStreamRequest();
createStreamRequest.setStreamName(streamName);
createStreamRequest.setShardCount(streamSize);
kinesisClient.createStream(createStreamRequest);

The createStreamRequest instance will help to create a stream request. You can set the
stream name, shard count, and SDK request timeout. In the createStream method, you
will pass the createStreamRequest:

long createTime = System.currentTimeMillis();
PutRecordRequest putRecordRequest = new PutRecordRequest();
putRecordRequest.setStreamName(streamName);
putRecordRequest.setData(ByteBuffer.wrap(String.format("testData-%d",
createTime).getBytes()));

Integrating Applications with AWS Services Chapter 2

[55]

putRecordRequest.setPartitionKey(String.format("partitionKey-%d",
createTime));

Here we are creating a record request and putting it into the stream. We are setting the data
and PartitionKey for the instance. It will create the records:

PutRecordResult putRecordResult =
kinesisClient.putRecord(putRecordRequest);

It will create the record from the putRecord method and pass putRecordRequest as a
parameter:

System.out.printf("Success : Partition key \"%s\", ShardID \"%s\" and
SequenceNumber \"%s\".\n",
putRecordRequest.getPartitionKey(), putRecordResult.getShardId(),
putRecordResult.getSequenceNumber());

It will print the output on the console as follows:

Troubleshooting tips for Kinesis streams
The following are common problems and their solutions:

Unauthorized KMS master key permission error:
Without authorized permission on the master key, when a
producer or consumer application tries to writes or reads an
encrypted stream
Provide access permission to an application using Key policies in
AWS KMS or IAM policies with AWS KMS

Sometimes producer becomes writing slower.
Service limits exceeded:

Check whether the producer is throwing throughput exceptions from
the service, and validate what API operations are being throttled.

Integrating Applications with AWS Services Chapter 2

[56]

 You can also check Amazon Kinesis Streams limits because of different
limits based on the call. If calls are not an issue, check you have selected
a partition key that allows distributing put operations evenly across all
shards, and that you don't have a particular partition key that's
bumping into the service limits when the rest are not. This requires you
to measure peak throughput and the number of shards in your stream.

Producer optimization:

It has either a large producer or small producer. A large producer is
running from an EC2 instance or on-premises while a small producer is
running from web client, mobile app, or IoT device. Customers can use
different strategies for latency. Kinesis Produce Library or multiple
threads are useful while write for buffer/micro-batch records,
PutRecords for multi-record operation, PutRecord for single-record
operation.

Shard iterator expires unexpectedly:

The shard iterator expires because its GetRecord methods have not
been called for more than 5 minutes, or you have performed a restart of
your consumer application.

The shard iterator expires immediately, before you use it. This might
indicate that the DynamoDB table used by Kinesis does not have
enough capacity to store the data. It might happen if you have a large
number of shards. Increase the write capacity assigned to the shard table
to solve this.

Consumer application is reading at a slower rate:

The following are common reasons for read throughput being slower than
expected:

Total reads for multiple consumer applications exceed per-shard
limits. In the Kinesis stream, increase the number of shards.
Maximum number of GetRecords per call may have been
configured with a low limit value.
The logic inside the processRecords call may be taking longer for
a number of possible reasons; the logic may be CPU-intensive,
bottlenecked on synchronization, or I/O blocking.

Integrating Applications with AWS Services Chapter 2

[57]

We have covered Amazon Kinesis streams. In the next section, we will cover Kinesis
Firehose.

Amazon Kinesis Firehose
Amazon Kinesis Firehose is a fully managed, highly available and durable service to load
real-time streaming data easily into AWS services such as Amazon S3, Amazon Redshift, or
Amazon Elasticsearch. It replicates your data synchronously at three different facilities. It
will automatically scale as per throughput data. You can compress your data into different
formats and also encrypt it before loading.

AWS SDK for Java, Node.js, Python, .NET, and Ruby can be used to send data to a Kinesis
Firehose stream using the Kinesis Firehose API.

The Kinesis Firehose API provides two operations to send data to the Kinesis Firehose
delivery stream:

PutRecord: In one call, it will send one record
PutRecordBatch: In one call, it will send multiple data records

Let's explore an example using PutRecord. In this example, the MyFirehoseStream
stream has been created. Here you can use Eclipse IDE for the example.

You need to import a few classes such as AmazonKinesisFirehoseClient, which will
help to create the client for accessing Firehose. PutRecordRequest and PutRecordResult
will help to put the stream record request and its result:

private static AmazonKinesisFirehoseClient client;

AmazonKinesisFirehoseClient will create the instance firehoseClient. You have to
assign the credentials and region to this instance:

String data = "My Kinesis Firehose data";
String myFirehoseStream = "MyFirehoseStream";
Record record = new Record();
record.setData(ByteBuffer.wrap(data.getBytes(StandardCharsets.UTF_8)));

As mentioned earlier, myFirehoseStream has already been created.

Integrating Applications with AWS Services Chapter 2

[58]

A record in the delivery stream is a unit of data. In the setData method, we are passing a
data blob. It is base-64 encoded. Before sending a request to the AWS service, Java will
perform base-64 encoding on this field.

A returned ByteBuffer is mutable. If you change the content of this byte
buffer then it will reflect to all objects that have a reference to it. It's always
best practice to call ByteBuffer.duplicate() or
ByteBuffer.asReadOnlyBuffer() before reading from the buffer or
using it.

Now you have to mention the name of the delivery stream and the data records you want to
create the PutRecordRequest instance:

PutRecordRequest putRecordRequest = new PutRecordRequest()
 .withDeliveryStreamName(myFirehoseStream)
 .withRecord(record);
putRecordRequest.setRecord(record);
PutRecordResult putRecordResult = client.putRecord(putRecordRequest);
System.out.println("Put Request Record ID: " +
putRecordResult.getRecordId());

putRecordResult will write a single record into the delivery stream by passing the
putRecordRequest and get the result and print the RecordID:

PutRecordBatchRequest putRecordBatchRequest = new
PutRecordBatchRequest().withDeliveryStreamName("MyFirehoseStream")
 .withRecords(getBatchRecords());

You have to mention the name of the delivery stream and the data records you want to
create the PutRecordBatchRequest instance. The getBatchRecord method has been
created to pass multiple records as mentioned in the next step:

JSONObject jsonObject = new JSONObject();
jsonObject.put("userid", "userid_1");
jsonObject.put("password", "password1");
Record record = new
Record().withData(ByteBuffer.wrap(jsonObject.toString().getBytes()));
records.add(record);

Integrating Applications with AWS Services Chapter 2

[59]

In the getBatchRecord method, you will create the jsonObject and put data into this
jsonObject . You will pass jsonObject to create the record. These records add to a list of
records and return it:

PutRecordBatchResult putRecordBatchResult =
client.putRecordBatch(putRecordBatchRequest);
for(int i=0;i<putRecordBatchResult.getRequestResponses().size();i++){
 System.out.println("Put Batch Request Record ID :"+i+": " +
putRecordBatchResult.getRequestResponses().get(i).getRecordId());
}

putRecordBatchResult will write multiple records into the delivery stream by passing
the putRecordBatchRequest, get the result, and print the RecordID. You will see the
output like the following screen:

Troubleshooting tips for Kinesis Firehose
Sometimes data is not delivered at specified destinations. The following are steps to solve
common issues while working with Kinesis Firehose:

Data not delivered to Amazon S3:
If error logging is not enabled then enable it and check error log
messages for delivery failure.
Verify that the S3 bucket mentioned in the Kinesis Firehose
delivery stream exists.
Verify whether data transformation with Lambda is enabled, the
Lambda function mentioned in your delivery stream exists, and
Kinesis Firehose has attempted to invoke the Lambda function.
Verify whether the IAM role specified in the delivery stream has
given proper access to the S3 bucket and Lambda function or not.
Verify your Kinesis Firehose metrics to check whether the data was
sent to the Kinesis Firehose delivery stream successfully.

Data not delivered to Amazon Redshift/Elasticsearch:
For Amazon Redshift and Elasticsearch, verify the points
mentioned in Data not delivered to Amazon S3, including the IAM
role, configuration, and public access.

Integrating Applications with AWS Services Chapter 2

[60]

For CloudWatch and IoT, delivery stream not available as target:
Some AWS services can only send messages and events to a Kinesis
Firehose delivery stream which is in the same region. Verify that
your Kinesis Firehose delivery stream is located in the same region
as your other services.

We will discuss Amazon SQS in the next section, which will help you to manage message
queuing when messages are waiting to be processed.

Amazon SQS
Amazon SQS is a fully distributed, highly scalable, reliable, and managed message queuing
service. Amazon SQS is easy to scale and decouples microservices, serverless applications,
and distributed systems.

This service will help to create message queuing applications and store messages in transit
between distributed systems. This application can run on any computer.

With Amazon SQS, you will not lose any messages when you move data between
application components, without requiring that each and every component will be
available.

Amazon SQS will help you focus on creating and building robust and sophisticated
applications without concentrating on how to store, manage, and retrieve messages from
any volumes.

Amazon SQS has two types of queues:

Standard queue: This queue is available for all regions:
At-Least-Once Delivery: Message will be delivered a minimum of
once and sometimes more than once
High Throughput: It supports unlimited number of transactions
per second per API action
Best-Effort Ordering: Sometimes messages will be delivered but
not the same order in which you sent them

Integrating Applications with AWS Services Chapter 2

[61]

You can use this method when the throughput is important.

FIFO queue: This queue is available in limited regions:
Exactly-Once Processing: Messages will be delivered only once
and will be available until the customer deletes them. Duplicates
will not come into the queue.
Limited Throughput: It supports a limited number of transactions.
Without batching, it supports 300 messages per second per
operation. With maximum batching of 10 messages per operation,
it can support up to 3,000 messages per second.
First-In-First-Out Delivery: Messages will be delivered in the same
order in which you sent them.

You can use this method when the order of events is important.

Benefits and features of Amazon SQS
Let's explore a few benefits of Amazon SQS:

Operational efficiency: Amazon SQS will help to eliminate the administrative
overhead and complexity associated with infrastructure and dedicated message-
oriented middleware (MoM).

There isn't any upfront cost. No need to install, acquire, or configure any
messaging software.

With Amazon SQS, message queues are created dynamically and scale
automatically to build applications quickly.

Reliability: Amazon SQS helps to transmit any amount of data, at any
throughput, without losing messages. To increase the overall fault tolerance of
the system, SQS can help to decouple application components to run and fail
independently. SQS queues can store messages of any components in distributed
applications.

Messages are stored in multiple availability zones so that they will be available
whenever the application needs them.

Messages will be delivered once with the FIFO queue and at least once with the
standard queue.

Integrating Applications with AWS Services Chapter 2

[62]

Security: In Amazon SQS, applications use server-side encryption (SSE) to
encrypt the message body while exchanging sensitive data. AWS Key
Management Service (KMS) with Amazon SQS SSE integration allows you to
manage the keys centrally. Authentication mechanisms help to secure the
messages stored in SQS message queues.
Integration: AWS services can easily integrate with Amazon SQS to build
scalable and flexible applications. You can integrate Amazon EC2, Amazon
Simple Storage Service (Amazon S3), Amazon DynamoDB, Amazon RDS,
Amazon EC2 Container Service (Amazon ECS), and AWS Lambda.

Amazon SQS works very well with Amazon Simple Notification Service (SNS)
for a powerful messaging solution.

Productivity: You can start Amazon SQS message queuing using a console or
SDK. SQS has four APIs which you can easily add: CreateQueue, SendMessage,
ReceiveMessage, and DeleteMessage. You can use the same APIs in standard
queues or FIFO queues.
Scalability: It scales elastically and manages pre-provisioning and capacity
planning with the application. Costs to use Amazon SQS are based on use and
not on an always-on model.

Amazon SQS provides the following major features:

Redundant infrastructure: It provides high availability to produce and consume
messages and highly-concurrent to access the messages.
Multiple producers and consumers: Multiple consumers or producers are
available in your system at the same time.
Configurable settings per queue: All of your queues may have different
configuration settings for example, if one queue requires more time for
processing than others.
Variable message size: Message size is 256 KB. Large messages can be split into
smaller ones. Large message content can be stored in Amazon S3 or Amazon
DynamoDB.
Access control: Sender and receiver can be controlled.
Delay queues: Default delay can be set on a queue so that it will delay enqueued
messages for a specified time.

To use the AWS SDK for Amazon SQS, it has the same setup and configuration which we
have discussed in Chapter 1, AWS Tools and SDKs. Here I will use Eclipse IDE for the
example.

Integrating Applications with AWS Services Chapter 2

[63]

Let's explore an example of Amazon SQS:

Open Eclipse IDE and create a new AWS Java project. Add information such1.
as Project name, Group ID, Artifact ID, Version, and Package Name.
Crate a new Java class under this project and import a few classes to use the2.
Amazon SQS.
AmazonSQS and AmazonSQSClientBuilder are used to create an instance of3.
sqsclient. Other imports are used to create and delete queues, and to send,
receive, and delete messages:

AmazonSQS sqsClient = AmazonSQSClientBuilder.standard()
 .withCredentials(credentials)
 .withRegion(Regions.US_WEST_2).build();

An sqsClient object will be created from AmazonSQSClientBuilder. It needs
to set the credentials and region where you want to create the SQS.

MyDemoQueue will be created from the CreateQueueRequest class. You will get4.
the queue URL from the sqsClient by calling the getQueueUrl method of
createQueue:

CreateQueueRequest createQueue = new
CreateQueueRequest("MyDemoQueue");
String myDemoQueueUrl =
sqsClient.createQueue(createQueue).getQueueUrl();

New messages will be sent from sqsClientby calling5.
the SendMessageRequest class:

sqsClient.sendMessage(new SendMessageRequest(myDemoQueueUrl, "This
is SQS Demo Example Test Message."));

receiveMessageRequestTest will receive messages from MyDemoQueue:6.

ReceiveMessageRequest receiveMessageRequest = new
ReceiveMessageRequest(myDemoQueueUrl);

It will create the instance of messageList and get information such as message7.
ID, body, and so on:

List<Message> messageList =
sqsClient.receiveMessage(receiveMessageRequest).getMessages();
for (Message msgInfo : messageList) {
 System.out.println("MessageId:" + msgInfo.getMessageId());
 System.out.println("ReceiptHandle:"+ msgInfo.getReceiptHandle());

Integrating Applications with AWS Services Chapter 2

[64]

 System.out.println("MD5 Of Body:" + msgInfo.getMD5OfBody());
 System.out.println("Body: " + msgInfo.getBody());
}

You can delete the message by calling the deleteMessage method of8.
sqsClient:

String messageReceiptHandle =
messageList.get(0).getReceiptHandle();
sqsClient.deleteMessage(new DeleteMessageRequest(myDemoQueueUrl,
messageReceiptHandle));

You can delete the queue by calling the deleteQueue method of sqsClient:9.

sqsClient.deleteQueue(new DeleteQueueRequest(myDemoQueueUrl));

Troubleshooting in Amazon SQS
Sometimes Amazon SQS Dead-Letter Queues do not behave as expected. The following are
common problems or issues and their solutions:

Message moved to Dead-Letter Queue:

Viewing messages from the AWS console might cause problems with a message
and move it to a Dead-Letter Queue. You can adjust this behavior in the following
way:

For the corresponding queue's redrive policy, increase the
Maximum Receives setting
From AWS Management Console, avoid viewing the
corresponding queue messages

Send and receive messages doesn't match:

When a message is sent to a Dead-Letter Queue manually, it will be captured by
the NumberOfMessagesSent metric. If, however, a message is sent to a Dead-
Letter Queue as a result of a failed processing attempt, it isn't captured by this
metric. Thus the values of NumberOfMessagesSent and
NumberOfMessagesReceived don't match.

Integrating Applications with AWS Services Chapter 2

[65]

In the next section, we will discuss Amazon Simple Workflow Service (SWF). It helps to
distribute work across different components. It gives full control to developers over
coordinating tasks and implementing processing steps without worrying about
complexities such as keeping their state and tracking their progress.

Amazon SWF
Software workflows have been very popular and the preferred method to is break big tasks
into sequential or parallel operational chunks depending on business requirements.
Workflows mostly follow state machine concepts, where we have an orchestrator, execution
steps in the form of states, and each state is executed through some events. Input/output
and to/from states are managed by the orchestrator.

As defined by AWS, Amazon SWF helps developers to build, run, and scale background
jobs that have sequential or parallel steps. It can be used in applications which need
distributed asynchronous processing.

SWF web services help maintain the state of your workflow but they don't execute any
software code, the logic of a workflow, or a state machine. SWF works on a polling
mechanism, where your software source code has to poll for the tasks using SWF APIs. The
software code will poll for new tasks and processes and provide its output back using SWF
APIs.

Amazon SWF enables you to easily separate business logic from state management of your
application that can be performed by human actions, web service calls, executable codes,
and scripts.

SWF maintains the work tasks to be provided to your software code and keeps track of the
workflow. SWF has two main parts: deciders and activity workers.

The decider application coordinates the execution of processing steps in a workflow. The
flow of an activity task can be controlled by deciders. When change happens during the
execution of a workflow, Amazon SWF will create a decision task. A decision task contains
the workflow history and assign tasks to the decider. The decider will receive the decision
task from Amazon SWF and analyze the workflow history to find out the next steps. Using
decisions, the decider will communicate these steps back to Amazon SWF.

Integrating Applications with AWS Services Chapter 2

[66]

Activity workers are threads or processes to perform activity tasks which are part of the
workflow. To use activity tasks, you must register them from the RegisterActivityType
action or from the Amazon SWF console. The activity worker will poll Amazon SWF for a
task which is appropriate for that worker to perform. Once the activity worker receives the
task, it will process and complete it. Then it informs Amazon SWF of the result. After
having completed the task, the activity worker will poll for another new task. It will
continue until the workflow execution itself is complete. Activity workers can be running
on a local machine, AWS EC2, or AWS Lambda.

As mentioned above, AWS SWF keeps track of the activity worker state. This tracking can
be for activity workers taking a short time, or a long time (say for months) to finish its
execution.

SWF is a reliable, scalable, and flexible solution.

AWS SWF can be used in following type of examples:

Order processing system: Multiple tasks are required to be carried out in an
order processing system. Each of these tasks can be programmed as an activity
worker and decider applications can orchestrate the work between activity
workers.
Video and audio encoding/decoding: Large video or audio files can be broken
into manageable chunks. These chunks can be encoded/decoded either in parallel
or in sequential form. These processed chunks can be merged at the end of the
process. In this encoding/decoding of each chunk, merging of all chunks can be
looked as activity workers. The decider application will orchestrate which chunks
are to be decoded/encoded in which sequence and when to merge processed
chunks to a merged file.

AWS SWF provides the following methods for developers to communicate with it:

AWS SWF APIs:
Specify the names of workflows (it can also be achieved using the
Management console).
Start a new workflow. The workflow execution is kicked into action.
From the activity worker machine, to request and execute tasks in
the cloud or on-premises.

Integrating Applications with AWS Services Chapter 2

[67]

AWS Flow Framework:
Collection of libraries which assist developers to make it faster and
easier to build applications with SWF.
It creates and executes your application's steps, keeps track of its
progress, and helps define retry rules for failed steps.

We have two sections about AWS SWF:

The AWS SWF components section gives info about SWF components
The AWS SWF examples section provides step-by-step information about SWF
examples

AWS SWF components
Now let's learn about a few of the components which are used in Amazon SWF:

Domain: For workflow execution, a data domain is used as a logical container.
Workflow: It represents code components. It defines the logical order of
workflow activities and child workflows.
Decider: It is a workflow worker. It polls for decision tasks and activities.
Activity: One or more units of work in a workflow.
Activity worker: Polls for activity tasks. In response, it runs activity methods.
Task List: It issues requests to the workflow and activity workers. Decision tasks
are tasks for workflow workers. Activity tasks are tasks for activity workers.
Workflow starter: It starts workflow executions.

Amazon SWF orchestrates the operation of components, coordinating the flow, passing data
into different components, heartbeat notifications, and handles timeouts behind the scenes.

Amazon SWF examples
We will see a few steps for the following examples:

AWS SDK for Java using Apache Maven
Workflow implementations
Building and running a project

Integrating Applications with AWS Services Chapter 2

[68]

AWS SDK for Java using Apache Maven
Please perform the following steps to include AWS SDK for Java using Apache Maven:

Assuming that you have already installed Maven in your machine, create a new1.
folder AWS SDK Example or any different name. Go to this folder and execute the
following command to set up the environment:

mvn archetype:generate -DartifactId=swfexample -DgroupId=com.packt
-DinteractiveMode=false

To use AWS SDK for Java in your project, you need to add the dependency into2.
the pom.xml file. For swf, it uses the aws-java-sdk-simpleworkflow module.
Add the following code in the<dependencies> tag in your pom.xml file:

<dependency>
<groupId>com.amazonaws</groupId>
<artifactId>aws-java-sdk-simpleworkflow</artifactId>
<version>1.11.78</version>
</dependency>

Make sure that JDK 1.7+ versions can be supported by Maven. Add the following
code into your pom.xml file before or after your <dependencies> block:

<build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId>
 <version>1.2.1</version>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 </configuration>
 </plugin>
 </plugins>
</build>

Integrating Applications with AWS Services Chapter 2

[69]

Workflow implementations
In this SWF example, we will create four different Java classes:

Types.java: It has the project's domain, workflow, and activity type data which
is shared with other components. It will help to handle registering these types
with Amazon SWF.
Activity.java (activity worker): It polls activity tasks and, in response, it runs
activities.
Worker.java (workflow worker or decider): Polls for decision tasks and
schedules new tasks.
Starter.java (workflow starter): Starts new workflow executions.

You need to import two classes, such as AmazonSimpleWorkflow,
AmazonSimpleWorkflowClientBuilder, and the simpleworkflow.model package for
this example.

Also create an instance of AmazonSimpleWorkflowClientBuilder to implement Amazon
SWF in your application. You need to add this code for all classes:

Private static final AmazonSimpleWorkflow simpleWorkflow =
AmazonSimpleWorkflowClientBuilder.defaultClient();

In Types.java, add the following constants into the file, which will used throughout the
application:

public final static String DOMAIN = "ExampleDomain";
public final static String TASKLIST = "ExampleTasklist";
public final static String WORKFLOW = "ExampleWorkflow";
public final static String WORKFLOW_VERSION = "1.0";
public final static String ACTIVITY = "ExampleActivity";
public final static String ACTIVITY_VERSION = "1.0";

Integrating Applications with AWS Services Chapter 2

[70]

SWF components can communicate with each other if they are in the same domain. The
following code will create the method to register the domain:

public static void registerDomain() {
 try {
 System.out.println("Register the domain '" + DOMAIN + "'.");
 simpleWorkflow.registerDomain(new RegisterDomainRequest()
 .withName(DOMAIN)
 .withWorkflowExecutionRetentionPeriodInDays("7"));
 } catch (DomainAlreadyExistsException e) {
 System.out.println("Exception: Domain Already exists!");
 }
}

Add the following function, which will help to register new activity types in your
workflow:

public static void registerActivityType() {
 try {
 System.out.println("Register Activity Type'" + ACTIVITY +"-" +
ACTIVITY_VERSION + "'.");
 simpleWorkflow.registerActivityType(new
RegisterActivityTypeRequest().withDomain(DOMAIN).withName(ACTIVITY)
.withVersion(ACTIVITY_VERSION));
 } catch (TypeAlreadyExistsException e) {
 System.out.println("Exception: Activity type already exists!");
 }
}

An activity type can be uniquely identified by its name and version.

Now register a new workflow type, which contains the logic of workflow execution:

public static void registerWorkflowType() {
 try {
 System.out.println("Register Workflow Type '" + WORKFLOW + "-"
+ WORKFLOW_VERSION + "'.");
 simpleWorkflow.registerWorkflowType(new
RegisterWorkflowTypeRequest().withDomain(DOMAIN)
 .withName(WORKFLOW).withVersion(WORKFLOW_VERSION));
 } catch (TypeAlreadyExistsException e) {
 System.out.println("Exception: Workflow type already exists!");
 }
}

Integrating Applications with AWS Services Chapter 2

[71]

As with an activity type, a workflow type is also uniquely identified by its name and
version.

Now add the main method to make this class executable and call register domain, activity
type, and workflow type methods in it:

public static void main(String[] args) {
 registerDomain();
 registerWorkflowType();
 registerActivityType();
}

In Activity.java, it will poll for activity tasks which are generated by SWF in response to
workflow decision.

Here we will implement a simple activity worker which drives a single activity.

Add the following method as an activity, which will take a string as input, concat with
greetings, and return the result:

private static String greetings(String input) throws Throwable{
return "Hi, " + input + "!";
}

Now add the activity task polling method into the main method:

public static void main(String[] args) {
 while (true) {
 System.out.println("Polling for an activity task from the tasklist '"
+ Types.TASKLIST + "' in the domain '" + Types.DOMAIN + "'.");

 ActivityTask task = simpleWorkflow.pollForActivityTask(
 new PollForActivityTaskRequest().withDomain(Types.DOMAIN)
 .withTaskList(new TaskList().withName(Types.TASKLIST)));
 String task_token = task.getTaskToken();
 }
}

Integrating Applications with AWS Services Chapter 2

[72]

Now add the following code into the main method that polls for tasks and get the task
token:

if (task_token != null) {
 String result = null;
 Throwable error = null;

 try {
 System.out.println("Executing the activity task. Input is '" +
 task.getInput() + "'.");
 result = greetings(task.getInput());
 } catch (Throwable th) {
 error = th;
 }

if (error == null) {
 System.out.println("The activity task success. Result is '"
 + result + "'.");
 simpleWorkflow.respondActivityTaskCompleted(
 new RespondActivityTaskCompletedRequest()
 .withTaskToken(task_token).withResult(result));
 } else {
 System.out.println("The activity task failed. Error is '"
 + error.getClass().getSimpleName() + "'.");
 simpleWorkflow.respondActivityTaskFailed(
 new RespondActivityTaskFailedRequest()
 .withTaskToken(task_token)
 .withReason(error.getClass().getSimpleName())
 .withDetails(error.getMessage()));
 }
}

If the task is successful then the worker responds to SWF by calling
the respondActivityTaskCompleted() method with
the RespondActivityTaskCompletedRequest object, which contains the task token and
result.

If the task fails then the worker responds to SWF by calling
the respondActivityTaskFailed() method with
the RespondActivityTaskFailedRequest object, which contains the task token and
error reason with the message.

Integrating Applications with AWS Services Chapter 2

[73]

In Worker.java, when the workflow worker receives a task, it will decide whether to
schedule a new activity or not and take an action.

Now call the pollForDecisionTask method for continuous polling into the main method.
Once the task is received, it will call its getTaskToken method to return a string to identify
the task:

public static void main(String[] args) {
 PollForDecisionTaskRequest task_request =
 new PollForDecisionTaskRequest()
 .withDomain(Types.DOMAIN)
 .withTaskList(new TaskList().withName(HelloTypes.TASKLIST));

 while (true) {
 System.out.println("Polling for a decision task from the
tasklist '" + Types.TASKLIST + "' in the domain '" + Types.DOMAIN + "'.");
 DecisionTask task =
simpleWorkflow.pollForDecisionTask(task_request);
 String taskToken = task.getTaskToken();
 if (taskToken != null) {
 try {
 executeDecisionTask(taskToken, task.getEvents());
 } catch (Throwable th) {
 th.printStackTrace();
 }
 }
 }
}

Add the executeDecisionTask method, which will take two parameters, string and list:

private static void executeDecisionTask(String taskToken,
List<HistoryEvent> events)
 throws Throwable {
 List<Decision> decisions = new ArrayList<Decision>();
 String workflowInput = null;
 int scheduledActivity = 0;
 int openActivity = 0;
 boolean completedActivity = false;
 String result = null;
}

Integrating Applications with AWS Services Chapter 2

[74]

In the preceding methods, we have set up some data members:

decisions: This is a list of decisions with processing task results
workflowInput: It has been provided by the WorkflowExecutionStarted
event
scheduledActivity: Count of scheduled activities
openActivity: Count of open activities
activity_completed: Boolean value of activity status; either it's completed or
not
result: String which holds the activity result

Now add the following code into the executeDecisionTask method to process
HistoryEvent objects:

System.out.println("Decision task Execution for history events: [");
for (HistoryEvent historyEvent : events) {
 System.out.println(" " + historyEvent);
 switch(historyEvent.getEventType()) {
 case "WorkflowExecutionStarted":
 workflowInput =
historyEvent.getWorkflowExecutionStartedEventAttributes().getInput();
 break;
 case "ActivityTaskScheduled":
 scheduledActivity++;
 break;
 case "ScheduleActivityTaskFailed":
 scheduledActivity--;
 break;
 case "ActivityTaskStarted":
 scheduledActivity--;
 openActivity++;
 break;
 case "ActivityTaskCompleted":
 openActivity--;
 completedActivity = true;
 result =
historyEvent.getActivityTaskCompletedEventAttributes().getResult();
 break;
 case "ActivityTaskFailed":
 openActivity--;
 break;
 case "ActivityTaskTimedOut":
 openActivity--;
 break;
 }

Integrating Applications with AWS Services Chapter 2

[75]

}
System.out.println("]");

In the preceding code, we are more interested in the WorkflowExecutionStarted event
because it indicates that execution has been started and provides initial input to the
workflow.

The ActivityTaskCompleted event is sent once the scheduled activity is completed.

Add the following code after the switch statement to respond with the proper decision
based on the task:

if (completedActivity) {
 decisions.add(
 new Decision()
 .withDecisionType(DecisionType.CompleteWorkflowExecution)
 .withCompleteWorkflowExecutionDecisionAttributes(
 new CompleteWorkflowExecutionDecisionAttributes()
 .withResult(result)));
} else {
 if (openActivity == 0 && scheduledActivity == 0) {
 ScheduleActivityTaskDecisionAttributes attrs =
 new ScheduleActivityTaskDecisionAttributes()
 .withActivityType(new
ActivityType().withName(Types.ACTIVITY).withVersion(Types.ACTIVITY_VERSION)
).withActivityId(UUID.randomUUID().toString())
.withInput(workflowInput);
 decisions.add(
 new Decision()
 .withDecisionType(DecisionType.ScheduleActivityTask)
 .withScheduleActivityTaskDecisionAttributes(attrs));
 }
}

If it is ScheduleActivityTask or CompletedWorkflowExecution decision, we add this
information to the decision list which has been declared in the start of the method.

Integrating Applications with AWS Services Chapter 2

[76]

Add the following code to the executeDecisionTask method to return a list of decision
objects:

simpleWorkflow.respondDecisionTaskCompleted(
 new RespondDecisionTaskCompletedRequest()
 .withTaskToken(taskToken).withDecisions(decisions));

In the preceding code, the respondDecisionTaskCompleted method will take task token
and decision objects.

Add the WORKFLOW_EXECUTION constant and the main method to the Starter.java class.
Create an instance of startWorkflowExecution which takes
the StartWorkflowExecutionRequest object as input in the main method:

public static final String WORKFLOW_EXECUTION = "ExampleWorkflowExecution";

public static void main(String[] args) {
 String workflowInput = "Amazon SWF";
 if (args.length > 0) {
 workflowInput = args[0];
 }

 System.out.println("Workflow execution starting '" + WORKFLOW_EXECUTION +
"' with input '" + workflowInput + "'.");

 WorkflowType wf_type = new WorkflowType()
.withName(Types.WORKFLOW).withVersion(Types.WORKFLOW_VERSION);

 Run run = simpleWorkflow.startWorkflowExecution(new
StartWorkflowExecutionRequest().withDomain(Types.DOMAIN)
 .withWorkflowType(wf_type).withWorkflowId(WORKFLOW_EXECUTION)
 .withInput(workflowInput).withExecutionStartToCloseTimeout("90"));

 System.out.println("Workflow execution started. Run id is '" +
run.getRunId() + "'.");
}

The Run object of startWorkflowExecution provides a Run ID. This ID is useful to
identify a particular workflow execution in SWF's history.

This Run ID is generated by SWF and does not have the same value as the
workflow execution name.

Integrating Applications with AWS Services Chapter 2

[77]

Building and running a project
You can build using the mvn package command. It will generate a swfexample-1.0-
SNAPSHOT.jar file in your target directory.

This example contains four different applications. They run independently.

If you are using Windows, you have to execute all applications on
different command lines. If you are using Linux, macOS, or Unix, you can
execute all applications on the same Terminal window one after another.

You can set the classpath in two ways. One uses the CLASSPATH environment variable to
specify the AWS SDK lib and the AWS SDK third-party lib as follows:

export CLASSPATH='target/swfexample-1.0-
SNAPSHOT.jar:/aws_sdk_path/lib/*:/aws_sdk_path/third-party/lib/*'
java com.packt.example.Types

Or you can use java -cp option when the application is running:

java -cp target/swfexample-1.0-
SNAPSHOT.jar:/aws_sdk_path/lib/*:/aws_sdk_path/third-party/lib/*
com.packt.example.Types

You need to register domain, workflow, and activity types before running workers and
workflow starters by executing the following commands:

java -cp target/swfexample-1.0-SNAPSHOT.jar com.packt.example.Types

 Once the domain, workflow, and activity type have been registered, you can start the
activity and workflow workers:

java -cp target/swfexample-1.0-SNAPSHOT.jar com.packt.example.Activityjava
-cp target/swfexample-1.0-SNAPSHOT.jar com.packt.example.Worker

When your workflow and activity workers are polling, you can start the workflow
execution. It will execute until the workflow returns a completed status:

java -cp target/swfexample-1.0-SNAPSHOT.jar com.packt.example.Starter

Integrating Applications with AWS Services Chapter 2

[78]

When you start the workflow execution, you can see the output delivered by both the
workers and workflow execution. You will see the output on the screen when the workflow
finally completes:

Troubleshooting Amazon SWF
The following are some common problems or issues you might get while developing or
running workflows:

Unknown resource fault
Non-deterministic workflows
Versioning problems
Troubleshooting and debugging a workflow execution
Lost tasks

Unknown resource fault
You will get an unknown resource fault when you try to perform some operation on a
resource which is not available. The reason might be one of the following:

Domain does not exist where you configure your worker. Register the domain
using the service API or console to fix this.
You try to create a workflow execution or activity tasks of types which are not
registered. You must register workers with their types at least once before
attempting to start executions.
A worker attempts to complete a task which timed out. To fix this, you should
consider adjusting the timeout. To achieve this, you should register a new version
of the activity type.

Integrating Applications with AWS Services Chapter 2

[79]

Non-deterministic workflows
The implementation of your workflow must be deterministic. An exception will be thrown
when the framework detects non-determinism while executing the workflow. Some
common mistakes that can lead to non-determinism are the use of random numbers, system
clock, and the generation of GUIDs. It will construct different values at different times,
which will take your workflow to a different path each time it is executed.

Versioning problems
When you implement a new version of your workflow/activity or add a new feature, you
should increase the version of the type by using the appropriate annotation. You can
append the version number to the task list name. It will ensure that tasks belonging to
different versions of the workflow and activities are assigned to the appropriate workers.

Troubleshooting and debugging a workflow execution
In the AWS SWF console, you can use the workflow history, which contains a complete and
authoritative record of all the events that changed the execution state of the workflow
execution. It is maintained by Amazon SWF but it will not help to diagnose problems. The
Amazon SWF console will enable you to search for workflow executions and you can then
drill down into individual history events. The WorkflowReplayer class is provided by the
AWS Flow framework. This is used to reply a workflow execution and you can debug it
locally. Using debugging tools, you can create breakpoints, step into code, and debug the
workflow.

Lost tasks
This might happen when you shut down old workers and start new workers but tasks get
delivered to old workers. It happens due to old race conditions which are distributed across
several processes. To avoid this kind of situation, you should add a delay between shutting
down old workers and starting new workers.

Integrating Applications with AWS Services Chapter 2

[80]

Summary
So far, we have completed implementations, examples, and best practices for different AWS
services using AWS SDK.

In the next chapter, we will learn about the different phases of the release process
in Continuous Integration (CI) and Continuous Deployment (CD) workflows. It will
include the four major parts of CI/CD: source, build, test, and production.

3
Continuous Integration and

Continuous Deployment
Workflow

Development and Operations (DevOps) is the buzzword in current market trends; it is a
practice/approach/methodology/process for continuous software development, testing,
integration, deployment, and for managing environments.

In this chapter, we will cover Continuous Integration (CI) and Continuous Deployment
(CD) workflows, and also see the difference between Continuous Delivery and Continuous
Deployment. We will explore various types of tool to use in the DevOps process.

CI is the workflow strategy which ensures that everyone's code changes integrate with the
current repository; it endeavors to catch bugs and reduce merge conflicts.

Continuous Delivery is the next step after CI, in which developers are developing software
in such a way that they can release it at any time. Sometimes people are confused
about Continuous Delivery (CD) and Continuous Deployment (CD), so we will discuss
this later in this chapter.

Continuous Deployment is the next step after CI or Continuous Delivery. In this process,
teams produce software in a short life cycle and then release it. It helps to release software
faster and more frequently.

Continuous Integration and Continuous Deployment Workflow Chapter 3

[82]

This chapter will cover the following topics:

An overview of DevOps
Continuous Integration – maintaining code repository
Continuous Delivery – automating build and self-testing
Continuous Deployment – automating production deployment
Tools used for DevOps processes
CI/CD on AWS

An overview of DevOps
Now, we know that DevOps is a contraction of DEVelopment and OPerationS. DevOps is
the end-to-end life cycle of a product and is built based on a focus on business needs and
shared goals within the organizations.

DevOps = Continuous Delivery + Continuous Integration + Continuous testing + Continuous
Deployment

In traditional software development, a product/project has different phases of the Software
Development Life Cycle (SDLC). We will not go into too much detail about all the phases
but it has phases such as development, integration, and implementation all the way to
operation and maintenance. All the phases are siloed and the cycle is expensive and slow.
One more problem is that if a client need changes during the development phase, it means
you are delivering software that doesn't contain changes, or you need to start the process
midway, which will take more time and money.

The Agile model helps to develop software by small iterations, and will adapt client
changes better than the Waterfall model, thus helping to save time and money.

However, with the Agile approach, there is a lack of collaboration between the Dev team
and the Ops team that slows down the development and release process. The DevOps
methodology provides better collaboration, fast and continuous software delivery, with
faster problem resolution and fewer problems to fix.

DevOps brings more flexibility with Continuous Delivery, CI, and the CD pipeline. It helps
to provide a more automated release and fewer failures with customer needs, using
effective tools and transparency.

Continuous Integration and Continuous Deployment Workflow Chapter 3

[83]

People have some common misconceptions about DevOps such as:

Is DevOps a new thing?: No. DevOps is not a new thing. It is an extension of the
Agile model. Agile's concept was to embrace constant development changes. So,
the DevOps concept is to embed those development changes within the
operations process.
Is DevOps a product?: No. DevOps it not a product. It is about the quality of your
project/product or application.
Is DevOps a fad?: No. Organizations that are adopting DevOps are deploying their
code 30 times more frequently with 50% less failure for a new release. We cannot
ignore this and that is the reason that DevOps is not fading and it will stay. Many
companies are already using the DevOps approach or they have started to do so.
Is DevOps a tool?: No. It is not a tool. It will help to connect or interact with other
tools. It will help to drive your organization's goals and interact in such a way
that it will help to establish transparency and improved communication
throughout the process, within your organizations.

The goal of DevOps
The goal of DevOps is to:

Increase the frequency and quality of deployment
Reduce the frequency and severity of new release failures
Shorten the lead time between fixes
Provide a faster mean time to recovery
Achieve a faster time to market

Reasons for integrating DevOps in your process
Now we know the goal of DevOps and in the next section, we will understand the reasons
for integrating DevOps in your process. These are listed here:

Faster identification of software defects.
You can mitigate and identify software defects, at any stage, with better
collaboration and communication between the Dev and Ops teams.
Better resource management.

Continuous Integration and Continuous Deployment Workflow Chapter 3

[84]

The Dev and Test team are waiting constantly for resources to arrive, causing a
delay in delivering the product in the software development stage.
Reduction in human errors.
Deploying frequent iterations helps to reduce human errors during the Dev and
the Ops process in DevOps. It will help to implement multiple deployments in a
defined timeline with a fewer failure rate.
Enhanced version control.
In all stages of the development life cycle, DevOps allows developers to leverage
the dynamic infrastructure to emphasize the individuals. To achieve that, it will
allow version control and automated coding options.

The benefits of DevOps
The benefits of DevOps are as follows:

Improved collaboration: Dev and Ops teams have to collaborate (https:/ ​/​aws.
amazon.​com/ ​devops/ ​what- ​is- ​devops/ ​#communication) closely to share
responsibilities and combine their workflows under DevOps. It emphasizes
values such as accountability and ownership to build more effective teams, and
will save time and reduce inefficiencies by reducing the handover time between
Dev and Ops.
Scale: DevOps will help to scale, manage, and operate your Dev and infra
process. Automation will also help to change systems efficiently, or to manage
complex systems with reduced risk. Infrastructure as a Code will help you to
manage development, testing, and production environments in an efficient and
repeatable manner.
Speed: DevOps gives you the ability to move faster as a business which means
that you can innovate faster, adapt to the changing market better, and grow
efficiently to drive business results. The DevOps model enables the Dev and Ops
teams to achieve these business results.
Rapid delivery by automation: DevOps enables you to innovate and improve
your product faster by automating the process, which increases the frequency
and pace of release. If you quickly release new features and fix bugs faster, you
will respond to the customer's needs more efficiently and build competitive
advantage. Continuous Integration and Continuous Delivery are practices which
will automate the software release process from build to deployment.

https://aws.amazon.com/devops/what-is-devops/#communication
https://aws.amazon.com/devops/what-is-devops/#communication
https://aws.amazon.com/devops/what-is-devops/#communication
https://aws.amazon.com/devops/what-is-devops/#communication
https://aws.amazon.com/devops/what-is-devops/#communication
https://aws.amazon.com/devops/what-is-devops/#communication
https://aws.amazon.com/devops/what-is-devops/#communication
https://aws.amazon.com/devops/what-is-devops/#communication
https://aws.amazon.com/devops/what-is-devops/#communication
https://aws.amazon.com/devops/what-is-devops/#communication
https://aws.amazon.com/devops/what-is-devops/#communication
https://aws.amazon.com/devops/what-is-devops/#communication
https://aws.amazon.com/devops/what-is-devops/#communication
https://aws.amazon.com/devops/what-is-devops/#communication
https://aws.amazon.com/devops/what-is-devops/#communication
https://aws.amazon.com/devops/what-is-devops/#communication
https://aws.amazon.com/devops/what-is-devops/#communication
https://aws.amazon.com/devops/what-is-devops/#communication

Continuous Integration and Continuous Deployment Workflow Chapter 3

[85]

Reliability: DevOps will reliably deliver by ensuring the quality of application
updates and infrastructure changes while maintaining a positive experience for
end users. To test that each change is safe and functional, use practices such as
Continuous Integration and Continuous Delivery. You can see real-time
performance by monitoring and logging.
Security: By using automated compliance policies, configuration management
techniques, and fine-grained controls, you can adopt the DevOps model without
sacrificing security. You can define and track compliance at scale without using
infrastructure as code and policy as code.

You will achieve: Faster release + highest quality.

DevOps includes the following processes:

Continuous Integration and Continuous Deployment Workflow Chapter 3

[86]

DevOps contains the following practices:

Continuous Integration
Continuous Delivery
Continuous Deployment

Let's understand all these practices in brief.

Continuous Integration – maintaining code
repository
CI originates with an extreme programming development process which is one of its
original twelve practices. It doesn't require you to deploy any particular tools but it is useful
if you use a CI server.

Continuous Integration and Continuous Deployment Workflow Chapter 3

[87]

CI means the developer can constantly merge their work with the master/main/trunk
branch, so it will be easier for the Test team to test the latest changes with the existing
changes. It will help to test code as soon as possible and provide rapid feedback, so that any
issue can be identified and fixed as soon as possible. In this process, most of the work is
done by automated tests which are part of the unit test framework.

The following is a pictorial representation of CI. In this process, the Dev Team, Testing
Team, and Software Configuration Team work together to integrate the latest code and
make it available for the next process:

Now let's look at an example.

Let's say you check out the latest working copy from the source code management system
on the main branch onto your local development machine. Here, when the developer copies
the code from the main branch to their own local machine, it is called a checkout and the
copy on the local machine is called the working copy. Once you take the latest code from
the main branch then you can update it in your working copy.

Now, you complete your task on the working copy, where you can also add or change the
automated test or alter the production code.

Continuous Integration and Continuous Deployment Workflow Chapter 3

[88]

Once you complete your development, you can start to do the automated build on your
local environment. It will take the local working copy for the source code, compile it, build
it, make executables, and run the automated test. If the generated and tested build contains
any errors or defects, then you should fix these and repeat all the processes (such as
compile, build, create executable, and run the automated test) until you get a clean build
without any error or defects.

Once that is done, you can update your code base with the latest code if anyone in your
team has checked in the code into the main branch, and then you can rebuild the code. You
need to fix any compilation issue and then commit your code with the main branch.

We cannot say that the code is integrated successfully until the build is executed from the
main branch, without any errors or issues. This build can be executed manually or
automatically.

If a bad build occurs at code level, it will be identified immediately and be fixed by the
team. You will never get a failed build in this CI environment, so in your team you will get
many builds a day.

Continuous Integration best practices
It's good practice to follow these best practices for CI:

 Maintain a repository: To manage a source code repository or master repository,
you have to use version control systems. This system will help to manage
different versions of the files and provide a history of the code. A master
repository will be the buildable code from a fresh checkout and it doesn't require
any additional dependencies. This repository contains the working version and
all the changes should be integrated in this repository. You can also place the
build server to monitor the code changes at any given time.
Build automation: A single command is capable of building the entire system.
The team should standardize the build script or build tool to trigger the build
from the command. This build automation includes automating the source code
integration, code compilation, unit and integration tests, and deployment on a
production-like environment. You also need to keep a backup of the previous
build in the version control system. If there is any failure on the build, then it can
be reverted anytime to the previous versions, and the source code can be
compared to find the reason for the failure.

Continuous Integration and Continuous Deployment Workflow Chapter 3

[89]

Make a self-testing build: To catch defects/bugs rapidly and efficiently, you have
to include test automation in the build process. The result of running that
automated test suite will give you information about any failed tests. If the test
fails, it will fail the entire build.
Everyone commits frequently: It will reduce the conflict if the developer
commits regularly. It is good practice for CI if the developer commits changes at
least once a day or several times a day. By doing this, the developer will see the
real-time state of the test and health of the application.
Build from every commit: A team gets more tested builds using frequent
commits. It means the main repository will stay in a healthy state. There are two
main ways you can do the build. One is a manual build and the second is using a
CI server.

In a manual build, the developer kicks off the build on the Integration machine,
using the main repository source code.

A CI server will monitor the repository. If there are any commits that have
happened on the main repository, it will automatically check against the
repository and start the build, and notifiy the result to the committer of the build.

Broken builds fixed immediately: As a part of the CI, if any build fails, it should
get fixed immediately. It means there should be the highest priority to fix the
build. The fastest way to fix the build is to revert the code from the last known
good build.
Faster build: The build should be very fast, so if there is a problem with
integration, it can be quickly identified. If it is more than 10 minutes, then the
process becomes dysfunctional as people won't commit frequently. A large build
will be broken into multiple small jobs and they will be executed in parallel.
Test on a clone of the production environment: The production environment
may differ from the test environment, so it might happen that a build on the test
environment works properly but it will fail when deployed to the production
environment. It will be costlier to create a replica of the production environment,
so it is better instead to create a pre-production environment (staging). This
environment is not tightly regulated but it has the same versions of the operating
system, software, patches and libraries. In that way, the build will go into actual
production without any dependency issue.

Continuous Integration and Continuous Deployment Workflow Chapter 3

[90]

Latest deliverables available easily: The team should know the latest build
location. It's a good practice to keep the recent builds in the same place. It will
help to do the early testing with the stakeholders and/or testers, to reduce the
chances of more defects after deployment, and if errors are identified at the early
stage then these can be fixed quickly.
Latest build results available for all: Build information such as start/finish and
its results, such as success/fail information, can be communicated with the team
through email or the website, so that everyone is aware of the current situation. If
the build fails, then it will notify the development team to take speedy action.
Deployment automation: Deployment automation helps to deploy the build into
production easily, by running the build on a local environment. As tests are
executed on the staging environment, this deployment automation requires a
minor increment in effort.

Continuous Delivery – automating build and
self-testing
After fully implementing CI in the organization, you can move on to the next process and
implement Continuous Delivery.

The following is a schematic of Continuous Delivery. In this process, the Dev Team, Testing
Team, and Software Configuration Team work together to integrate the latest code and
make it available for the acceptance test. Once this acceptance test has completed
successfully, the product is available for delivery:

Continuous Integration and Continuous Deployment Workflow Chapter 3

[91]

Continuous Delivery aims to deliver quality software in a very fast manner. It has the
ability to continuously deliver changes, such as new features, bug fixes, and configuration
changes into UAT, staging, and production. It also helps to deliver work in small batches
frequently, so that issues can be uncovered at an early stage.

Continuous Delivery differs from Continuous Integration as it will feed the business logic
for tests. For Continuous Integration it will do the unit test and unable to catch all the
design issue. You can deliver the code for a code review in this process.

The following are the key differences between CI and Continuous Delivery:

Continuous Integration Continuous Delivery

Can be done by one developer Needs team collaboration

Continuous Delivery is not required for this
process

Continuous Integration is required for
this process

Continuous Integration is a continuous journey
to get feedback and do the build Continuous Delivery is a linear journey

You cannot directly push the build to
production

You can directly push the build to
production

Continuous Integration and Continuous Deployment Workflow Chapter 3

[92]

You can do Continuous Delivery when:

The product is deployable throughout its life cycle
Working on new features, your team's priority will be keeping the software
deployable
Someone makes changes to the production readiness; you will get fast and
automated feedback
You can deploy any version of the software to environments such as UAT,
staging, or production from the push-button

Continuous Delivery can be achieved by CI of the software developed by the team, building
the executables and running automated tests to detect any issue. You can push the
executable into a production-like environment to ensure that it will work in production. To
do this, you can use the Deployment Pipeline.

Clients or business teams should be able to ask for the current working development
version to be deployed to production, at any given time. This version has already passed
the acceptance test, so there should be no objection from any of the team.

You can achieve Continuous Delivery with close and collaborative relationships between
the teams involved in software delivery. You can also carry out extensive automation for all
parts in the process using the Deployment Pipeline.

This Deployment Pipeline contains different stages such as Build Automation, Continuous
Integration, Test Automation, and Deployment Automation. Let's go through all the stages
in brief:

Build Automation: This is the first process; the build happens automatically
using tools rather than manually.
CI: In CI, developers check in the code many times on a shared repository, the
automated build will verify this check in, inform the team if there are any defects,
issuers or errors, and carry out iterative and incremental software delivery.
Test Automation: A new version of the application has been tested to ensure that
it contains all the required functionalities with quality. It is important that it also
verifies the security, performance, and compliance verified by the pipeline. This
stage involves many automated activities.
Deployment Automation: It should be automated to provide the reliable delivery
of new functionalities to the users within minutes.

Continuous Integration and Continuous Deployment Workflow Chapter 3

[93]

Continuous Delivery benefits
Now, let's look at the benefits of Continuous Delivery.

Less deployment risk: You are deploying in chunks or small parts so there is less
chance of something going wrong; if anything goes wrong it can be fixed easily.
Track the progress: You can track the working progress as it is deployed in the
production environment or production-like environment.
Feedback from user: There is always a big risk with any software that you have
developed something which is not useful. You will get quicker feedback from
real users on how useful the software is, if you present this software earlier and
more frequently to the user.

Once you implement the Continuous Integration–Continuous Delivery process, you will see
the following benefits:

Enhancement in teamwork
Lower costs
Higher quality with lower risk
Quicker response to changes
More frequent releases of the features
Stability and reliability
Reduction in manual efforts and time

Continuous Deployment – automating
production deployment
Continuous Deployment (CD) is an extension of CI which is used to minimize the overall
process time. Its use means it will help to reduce the time from the development team
writing the new code to it being delivered to the real user in production environments.
There will be no UAT process before production. Testing is done before the code gets
merged to the main branch and it is performed on a clone of the production environment.
Hence, the production branch is always stable and executables are ready to deploy to the
production environment by an automated process. This process is an automated process
and anyone can perform it by the single click of a button.

Continuous Integration and Continuous Deployment Workflow Chapter 3

[94]

CI and Continuous Delivery is required prior to CD because, without it, the build or
executables might produce an error in the production environment.

The following diagram displays of the CD processes:

How they work together
In the CD process, you have to create several automated parts. You have to automate CI for
the build server and Continuous Delivery for the staging server, which has the ability to
deploy in a production environment.

The entire process can be automated from start to finish. Let's explore the different steps for
that process:

After completing the work, the developer will check in the code to the branch.1.
The CI server will pick this change and merge it with the master branch, perform2.
unit tests, and merge the code to the staging environment, based on test results.
The developer will deploy it to the staging environment and QA will test the3.
functionality.

Continuous Integration and Continuous Deployment Workflow Chapter 3

[95]

If it passes the QA test then the build will move to the production environment4.
and the CI server will pick the code again, and determine if it's OK to merge into
the production environment.
After successfully completing Step 4, it will deploy to the production5.
environment.
This process changes on the basis of requirement and need.6.

In CD, changes are constantly tested, deployed, and released to the live or production
environment, after successful verification. Code from development to release must be free
flowing and it can be maintained and controlled by the Dev team. In the automation
process, steps are implemented and executed without any cumbersome workflows.

People are very often confused with both CDs—Continuous Delivery or Continuous
Deployment.

In Continuous Delivery, you are able to create the executable and you can deploy it to the
production environment, but you need to do this manually when the business needs it.

In Continuous Deployment, you are able to create the executable and you can deploy it to
the production environment, automatically.

In order to do Continuous Deployment, you must be doing Continuous Delivery.

The benefits of Continuous Deployment
Your focus on the product will increase
You can focus on actual testing and automate the repetitive tasks for better
product quality
You will get frictionless deployments, without compromising security
You can scale the product from a single application and make it available as an
Enterprise
You can connect with existing tools and use the technologies into an easy going
workflow
There will be integration between teams and processes with a unified pipeline
You can create workflows across the dev, test, and production environments
You can get a single view across all applications and environments
In a unified pipeline, you can provide traditional and cloud-native applications
You can get overall productivity improvements

Continuous Integration and Continuous Deployment Workflow Chapter 3

[96]

So far, you have understood the DevOps processes. Let's explore the tools used in the
DevOps process.

Tools used for DevOps processes
The DevOps process consists of different kinds of tool to make the process smoother. It
includes tools for source code management, configuration management, building and
testing the systems, integration, application deployment, version control, and continuous
monitoring.

Different tools are required for Continuous Integration, Continuous Delivery, and
Continuous Deployment. You will need more or fewer tools, as per your application
requires.

Here are some of the key tools and practices you need to know:

Source Code Management: GIT, Bitbucket, Subversion
Build Automation Tools: Maven, Ant, Gradle
Test Automation: Selenium, JUnit, Cucumber
Continuous Integration: Jenkins, Bamboo, Hudson
Configuration Management: Puppet, Chef, Ansible
Continuous Monitoring: Nagios, Ganglia, Sensu
Virtual Infrastructure: Amazon Web Service, Microsoft Azure, Google Cloud
Platform.

Source Code Management
In Source Code Management, a repository is a common place where the developer will
check in and check out (download the code into a local system or environment) the code.
This repository manages the various versions of source code that are checked in and
available for checkout, so the developers will not overwrite other people's code.

This is the major component of Continuous Integration; some of the popular source code
repository tools are Git, Bitbucket, and Subversion (SVN).

Continuous Integration and Continuous Deployment Workflow Chapter 3

[97]

GIT
GIT is a distributed version control system to keep track of changes in any set of files
between different people. In GIT, every developer's repository also contains the full history
of all the changes.

The object format of GIT's files uses a combination of delta encoding for storing content
differences, version metadata, compression and directory contents, explicitly. GIT has a
significant performance benefit and it is secure with a SHA1 secure hashing algorithm.

Bitbucket
Bitbucket is owned by Atlassian and it is a web-based hosting service. It is used for
development projects and source code that uses Mercurial or Git as a revision control
system. Bitbucket has three different deployment models – Cloud, Bitbucket Server, and
Data center.

Bitbucket can integrate easily with other Atlassian products such as Jira, Confluence,
Bamboo, and HipChat.

Subversion (SVN)
Subversion (abbreviated SVN, after the command name svn) is a free and open source
software versioning and revision control system, distributed under Apache License.

Subversion is used to manage current and historical versions of files and directories such as
source code, web pages, and documentation. It also allows you to recover older versions of
files and the history of the changed data. You can use different components after you install
Subversion; components are tools and programs such as svn, svnversion, svnlook,
svnadmin, svnsync, and a few others.

Build Automation tool
Build Automation is the process for automating the creation of the build, compiling the
source code, packaging the code into executables, and running test automation.

Continuous Integration and Continuous Deployment Workflow Chapter 3

[98]

Build tools can be differentiated into two types, such as task-oriented and product-oriented.
Task-oriented build tools will describe the dependency in a specific set of tasks. Product-
oriented build tools describe things in terms of products.

Popular tools are Maven, Ant, and Gradle.

Maven
Maven is used to simplify the build processes (its name comes from a Yiddish word
meaning accumulator of knowledge). Now it is used to build and manage any Java-based
projects. Its primary goal is to reduce the development effort. To achieve that goal, Maven
deals with:

Making the build process easy
Providing a uniform build system
Providing quality information for a project
Providing best practices development guidelines
Allowing new feature migration transparently

Ant
Apache Another Neat Tool (ANT) is a Java-based build tool for automating software build
processes. Apache Ant is free, portable, open standard, and easy to understand.

In ANT, we have to provide project structure information into the build file, as well as
provide the order for the information about what and when to do what through the code.
You can execute ANT from the command line or integrate it into your IDE.

Gradle
Gradle is an advanced – general purpose, build management automation tool based on
Groovy and Kotlin. It supports the automatic download of libraries or other dependencies.
It uses a Domain Specific Language (DSL) instead of the traditional XML form to declare
project configuration. It utilizes Directed Acyclic Graph (DAG) to determine the order of
the task in which it will run.

Continuous Integration and Continuous Deployment Workflow Chapter 3

[99]

Test automation
Test automation means that the test tool will execute the test case automatically and
produce the test results. It saves the human effort of manual testing and has less scope for
errors in the testing. It minimizes redundant manual work. Once the test script is ready, it
can be run any number of times to test the same application.

In DevOps, testing focuses on automated tests within the build pipeline to ensure that the
time you have a deployable build, you are confident that it is ready to be deployed.

You need to do the automated testing of the deployed code before it goes into the process of
Continuous Delivery. Some popular tools are Selenium, JUnit, and Cucumber.

Selenium
Selenium is a portable software testing framework to perform web application testing,
executed on multiple operating systems and browsers. It provides a record and playback
feature to write tests without learning the test script language. It is compatible with popular
programming languages such as Java, C#, Python, PHP, Perl, PHP, Ruby, and Automation
Testing Framework. You can create scripts for the reproduction of bugs and regression
testing.

JUnit
JUnit is an open source unit testing framework for the Java programming language. It is
useful for the Java developer to write and run repeatable tests. It is important for Test-
Driven Development (TDD). It promotes ideas such as first testing then coding which means
set up the test data for the code, test it first, and then implement it. It allows you to write
codes faster to increase product quality.

Cucumber
Cucumber is an open source tool to test other software. It is designed over the concept of
behavior-driven development (BDD) and it runs automated acceptance tests. By running
this acceptance test, it describes the behavior of the application. It has been written in the
Ruby programming language; it supports other programming languages as well, as it has
cross-platform OS support.

Continuous Integration and Continuous Deployment Workflow Chapter 3

[100]

Continuous Integration
We have already learnt about CI, so we will discuss the tools used in CI, namely Jenkins,
Bamboo, and Hudson.

Jenkins
Jenkins is an open source DevOps tool written in Java and run with different OS Systems. It
is used to monitor the execution of repeated tasks. It provides CI and Continuous Delivery
and is a server-based system, easily set up, and configured. It supports different SCM tools
such as CVS, Git, Subversion, and Clearcase. It can also execute Apache Maven and Apache
Ant, as per project needs. It helps to find the issue quickly and integrate project changes
easily. It supports many plugins to build and test projects.

Bamboo
Bamboo is a CI and Continuous Delivery tool from Atlassian. It is used to do an automated
build, test, and release. Bamboo supports builds in different languages using build tools
and command line tools.

In Bamboo, if any events happen you will receive customized build notifications in email,
messages, or pop-up windows in IDEs.

Hudson
Hudson is a tool for CI. It is written in the Java language and runs on the servlet container.
It helps to build, test software projects, and monitor jobs continuously. It supports SCM
tools including Git, SVN, CVS, and build tools including ANT, Maven, Gradle, as well as
unit testing framework, and shell/batch scripts.

Configuration Management
Configuration Management is a way to improve the complete development, deployment,
and operations pipeline. It is the process of standardizing configurations. It enforces these
configuration states to infrastructure in an automated manner. Configuration Management
is made up of an source code repository, an artifact repository and a configuration
management database, which are used during the development and operation phase.
Popular tools for configuration management are Puppet, Chef, and Ansible.

Continuous Integration and Continuous Deployment Workflow Chapter 3

[101]

Puppet
Puppet is a Configuration Management Tool which runs on many Unix-like systems and
Windows systems. A system configuration can be described by its own declarative
language or a Ruby Domain-Specific Language (DSL). This information is stored in
Puppet Manifests. Puppet follows the client server architecture, as well as being used as a
stand-alone application. Puppet is model-driven, which requires limited programming
knowledge. It is flexible and helps to increase productivity and manageability.

Chef
Chef is a Configuration Management Tool written in Ruby and Erlang to achieve speed,
scale, and consistency. System configuration recipes can be written in pure-ruby or DSL.
Chef is used to streamline the tasks for configuring and managing servers and can integrate
with cloud-based platforms, such as Amazon Web Services (AWS), Google Cloud
Platform, Microsoft Azure, and so on. It utilizes the Master–Agent model and the
installation requires a workstation to control the master.

Ansible
Ansible is an open source platform for configuration management. It was written in Python
and PowerShell. It will help to automate the entire application life cycle, so it will be easier
for a team to speed up productivity and scale automation. Apart from other tools, Ansible
uses an agent-less architecture. In this architecture, nodes are not installed and run
background daemons to connect with controlling machine. It will reduce the overhead on
the network. It uses the descriptive and easy language, YAML, to express description of
system.

Continuous Monitoring
Continuous Monitoring will intelligently manage, analyze, and monitor hybrid
applications, cloud on-premises, and network infrastructures. It is implemented with
Application Performance Management (APM) to improve the stability of applications and
monitor user experience. Monitoring and alerts at the application and operational level can
give the ability to measure anything, so it spots patterns/trends and provides real business
insight.

Some popular tools for Continuous Monitoring are Nagios, Ganglia, and Sensu.

Continuous Integration and Continuous Deployment Workflow Chapter 3

[102]

Nagios
Nagios is an open source, computer software tool for monitoring and alerting. It is used to
monitor and alert systems metrics, network services, applications, and infrastructure. It
alerts the users when something goes wrong in the application and again alerts when the
problem has been resolved. It provides remote monitoring.

Ganglia
Ganglia is an open source and highly-scalable distributed cluster monitoring tool for high-
performance systems that supports clusters and grids. It provides monitoring of disks, CPU
usage, memory, and other aspects for cluster health, and makes this information available
offline. It also allows you to remotely and historically view statistics for all the monitored
machines. You can integrate open source solutions, such as Logstash and Hadoop.

Sensu
Sensu is a free, open source, message-oriented architecture, and monitoring system which
handles a cloud environment. It allows monitoring of applications, servers, and services. It
is able to re-use existing Nagios plug-ins. You can write plug-ins and think notifications
(handlers) for any languages.

Virtual Infrastructure
Virtual Infrastructures are infrastructures on the cloud or Platform as a Service (PaaS)
provided by cloud vendors, such as Amazon Web Service and Microsoft Azure. With the
help of Configuration Management Tools, you can create new machines programmatically
using APIs provided by these infrastructures.

You can also use private clouds like vCloud provided by VMWare. This will allow you to
run a private virtual cloud on top of the hardware in a data center.

You can combine virtual infrastructure with an automation tool that will give you the
ability to configure servers automatically, build the environment, and run the tests.

Let's explore briefly how you can do the CI/CD in the AWS environment.

Continuous Integration and Continuous Deployment Workflow Chapter 3

[103]

CI/CD on AWS
AWS provides Developer tools to work with CI/CD.

It has CodeCommit and CodeBuild to achieve CI in the AWS environment. We will discuss
these tools in Chapter 4, CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing.

It also provides CodeDeploy and CodePipeline to achieve CI and Continuous Deployment
in the AWS environment. You can develop, build, and deploy applications quickly using
AWS CodeStar templates. We will discuss these tools in Chapter 5, CI/CD in AWS Part 2 –
CodeDeploy, CodePipeline, and CodeStar.

Summary
So far, we have completed the different phases of release processes into the CI/CD
workflow. It includes four major parts of CI/CD; source, build, test and production.

In the next chapter, we will discuss more about how we can achieve CI and CD on the AWS
platform using Developer tools, such as CodeCommit and CodeBuild.

4
CI/CD in AWS Part 1 –

CodeCommit, CodeBuild, and
Testing

AWS with DevOps provides services to build software products reliably, rapidly, and
delivers them using a set of flexible services. It simplifies the deploying of application code,
automates the release process and provision, manages the infrastructure and monitoring of
applications, and infrastructure performance. It also helps to automate manual tasks and
manage complex environments, at any scale.

To achieve DevOps on the cloud, AWS provides Developer tools to securely store and
version the source code and automatically build, test, and deploy applications.

AWS Developer tools provide services such as CodeCommit, CodeBuild, CodeDeploy,
CodePipeline, CodeStar, and AWS X-Ray.

In this chapter, we will understand CodeCommit and CodeBuild services which are useful
to commit the code into private Git repositories then build the code and test it.

At the end of the chapter, you will be aware of the AWS Developer tools, such as
CodeCommit and CodeBuild.

In this chapter, we will cover the following topics:

A brief overview of AWS for DevOps
AWS CodeCommit – maintaining code repository
AWS CodeBuild – automating the build

Let's explore each topic.

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[105]

A brief overview of AWS for DevOps
You will get more benefits when you use AWS for DevOps.

The following are a few points:

Fast start: AWS provides ready-to-use services without any setup or software
installation. You must have an AWS account to use this service.
Fully managed: It provides fully managed services that help us to focus more on
the core products and worry less about the setup of the environment, installation,
and infrastructure.
Highly scalable: You can manage to scale from a single instance to multiple
instances from AWS service. It will simplify your resources by configuring,
provisioning and scaling with this services.
Programmable: You can use all the services from APIs, SDKs, and the AWS
command-line interface. You can also use AWS CloudFormation templates to
model and provision your entire AWS infrastructure and AWS resources.
Automation: AWS services helps to automate the build, quickly and more
efficiently. Development and test workflows, deployments and container and
configuration management can be automated using a manual task or process.
Secure: You can use AWS Identity and Access Management (IAM) to secure the
environment by setting up the user permissions, roles and policies. It gives
granular control over the environment and gives access to the authorized person
only.
Large ecosystem of partners: A large ecosystems of partners is supported by
AWS to integrate and extend AWS services. You can use your preferred open
source or third-party tools to build a system on AWS.
Pay-As-You-Go: AWS services have a What You Pay is What You Use
(WYPWYU) kind of concept. You don't have to pay any upfront amount, suffer
termination penalties, or commit to long-term contracts. You can purchase the
service when you plan to use it and when you need it.

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[106]

The following is a list of AWS Tools which provide different solutions for CI/CD:

AWS Tool Name Solutions Description

AWS CodeCommit Version
Control

It is used to store source code securely on private
Git repositories

AWS CodeBuild CI/CD It is used to build and test code with continuous
scaling

AWS CodeDeploy CI/CD Your code will deploy automatically

AWS CodePipeline CI/CD This is a Continuous Integration/Continuous
Delivery Service from AWS

AWS CodeStar CI/CD Quickly develop, build, and deploy applications
using templates

AWS X-Ray Monitoring and
Logging Used to debug and analyze the applications

AWS Command Line
Interface

You can manage your AWS resources by using
this tool

AWS Cloud9 (New) You can use Cloud IDE on your browser to write
the code, run it and debug if necessary

Now, in this chapter we will dig more into the two tools: AWS CodeCommit and AWS
CodeBuild.

AWS CodeCommit – maintaining code
repository
AWS CodeCommit is a highly scalable and fully managed source control service under
Developer tools in AWS. It is highly secure and helps companies to store source code on
private GitHub repositories. It eliminates worry about scaling the infrastructure or your
source code system.

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[107]

AWS CodeCommit has the following benefits:

Fully managed: It eliminates the need to host, maintain, back up, and scale own
source control servers. It scales automatically, as per the needs for your project.
High availability: It provides highly scalable, durable, and redundant
architecture which is designed to keep your repositories accessible and available.
Store anything: There are no size limits for the repository and it allows you to
store any type of files. You can store different versions of application assets such
as libraries and images with your code.
Secure: It is fully integrated with AWS Identity and Access Management (IAM)
to allow you to assign user-specific permission to the repositories.
Faster development life cycle: AWS CodeCommit, keeps all the environments
such as build, staging, and production close to the repositories. It will
incrementally transfer the changes and not the whole application, so the speed
and frequency of the application development life cycle increases drastically.
Existing tools usage: With CodeCommit, you can use your preferred
development environment plug-ins, graphical clients, existing Git tools, and
Continuous Integration/Continuous Delivery system. All the Git commands are
also supported by AWS CodeCommit.

AWS CodeCommit stores data in Amazon S3 and Amazon DynamoDB to provide high
availability, scalability, and durability to your repositories. You can simply create a
repository to store the code without any software to install, configure, and operate, or
hardware provision to scale.

The following are some of the key features of AWS CodeCommit:

Collaboration: It is designed for collaborative software development that allows
you to commit, branch, and merge code to maintain control over a team's
projects. It supports pull requests that provide a mechanism to request code
reviews and discuss code with collaborators. You can create a new repository
from AWS CLI, AWS SDKs, or AWS Management Console and start working
with it using Git.
Encryption: It is used to transfer files to and from through HTTPS and SSH. Your
repositories are automatically encrypted at rest, as well as in transit through the
AWS Key Management Service (KMS) using customer-specific keys.

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[108]

Access control: It uses AWS IAM to control and monitor who can access data and
how, when, and where they can access it.
Highly available and durable: It stores repositories in Amazon S3 and Amazon
DynamoDB. Your data is highly available, durable, and stored across multiple
facilities.
Unlimited repositories: It allows you to create as many repositories as you need
without any size limits. You can store and version any files with your code.
Easy access and integration: You can manage your repositories from AWS CLIs,
AWS SDKs, and AWS Management Console. You can use all Git commands and
any Git or Git graphical tools to interact with your repository source files. It can
easily integrate with development environment plug-ins or the Continuous
Integration/Continuous Delivery system.
Notifications and custom scripts: It uses the repository triggers to send
notifications and creates HTTP webhooks with Amazon's Simple Notification
Service (SNS) or invokes AWS Lambda functions to the repository events you
choose.

Prerequisites of AWS CodeCommit
AWS CodeCommit provides the facility to add/update/delete any files to repository using
AWS Management Console. But if you want to work across different branches or with
multiple files than you can set up your machine to work with repositories. Configuring
HTTPS Git Credentials is the simplest way to set up AWS CodeCommit. This HTTPS
method for authentication will:

Use a static username/password
Work well with AWS CodeCommit-supported operating systems
Be compatible with development tools or integrated development environments
which Git credentials support

It means you can set up the connection with your repository by using Git credentials or using
other methods. You need to go through the following options carefully and decide the best
suitable method for your business requirements.

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[109]

AWS CodeCommit setup using Git credentials
You can generate a static user name and password with HTTPS connections and Git
credentials in IAM. These generated credentials can be used with Git, third-party
development tools, and IDEs that supports the Git username and password authentication
mechanism. This is the easiest as well as the simplest way to connect with AWS
CodeCommit:

Setup Git credentials for HTTPS users: To set up connections between the local
computer and AWS CodeCommit repositories. You can follow this URL for more
information: https:/ ​/​docs. ​aws. ​amazon. ​com/ ​codecommit/ ​latest/ ​userguide/
setting- ​up- ​gc. ​html.
Connections from IDE or Development tools using Git credentials: To set up
connections between Eclipse IDE and AWS CodeCommit repositories using Git
credentials. Currently, AWS Cloud9, Eclipse, Visual Studio, IntelliJ, Xcode, and
many other IDEs support Git credentials to integrate. You can follow this URL for
more information: https:/ ​/ ​docs. ​aws. ​amazon. ​com/ ​codecommit/ ​latest/
userguide/ ​setting- ​up- ​ide. ​html.

AWS CodeCommit setup using other methods
You can use other methods due to operational reason if you do not want to use Git
credentials. In this case, you can use the SSH protocol to connect to the AWS CodeCommit
repository. With this SSH connection, you will create public and private key files on the
local machine that will be used for SSH authentication from Git and AWS CodeCommit.
You will store private key on your local machine and associate your public key with an
IAM user.

For AWS CodeCommit, Git credentials might be easier and simpler than SSH as SSH
requires you to create and manage public and private key files manually.

https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ide.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ide.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ide.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ide.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ide.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ide.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ide.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ide.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ide.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ide.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ide.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ide.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ide.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ide.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ide.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ide.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ide.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ide.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ide.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ide.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ide.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ide.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ide.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ide.html

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[110]

SSH Connection is varied depending on your local computer's operating system. You can
distinguish SSH connections in the following ways:

 AWS CLI not using by SSH users: If you have public and private keys and you
are aware of an SSH connection on your local computer. You can follow this URL
for more information : https:/ ​/ ​docs.​aws. ​amazon. ​com/​codecommit/ ​latest/
userguide/ ​setting- ​up- ​without- ​cli. ​html.
SSH connections on Unix, Linux, or MacOS: Create a public-private key pair
and set up connections on Unix, Linux, or MacOS operating systems. You can
follow this URL for more information: https:/ ​/​docs. ​aws. ​amazon. ​com/
codecommit/ ​latest/ ​userguide/ ​setting- ​up- ​ssh- ​unixes. ​html.
SSH connections to AWS CodeCommit repositories on Windows: To create a
public-private key pair and set up connections on Microsoft Windows operating
systems. You can follow this URL for more information: https:/ ​/​docs. ​aws.
amazon.​com/ ​codecommit/ ​latest/ ​userguide/ ​setting- ​up-​ssh- ​windows. ​html.

If you don't want to configure IAM users and you want to set up the AWS CodeCommit
repository then you can use the credential helper included in the AWS CLI which is the
only method that supports federated access and temporary credentials. AWS CodeCommit
might have some connectivity issues with the credential helper included with AWS CLI
because some operating system, and Git version, have their own credential helpers.

So for easier usage you can configure GIT credential with HTTPS and create IAM users
instead of using the credential helper.

There are different ways to setup AWS CLI's credential helper for Linux, macOS, Unix, and
Windows.

Getting started with AWS CodeCommit
As you have already learnt about how to create a repository in AWS CodeCommit in
previous steps, under the Set up Git credentials for HTTPS users topic. You will see how you
can push the changes, browse the files which you pushed, and view the changes into files.

https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-without-cli.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-without-cli.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-without-cli.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-without-cli.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-without-cli.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-without-cli.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-without-cli.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-without-cli.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-without-cli.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-without-cli.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-without-cli.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-without-cli.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-without-cli.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-without-cli.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-without-cli.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-without-cli.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-without-cli.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-without-cli.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-without-cli.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-without-cli.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-without-cli.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-without-cli.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-without-cli.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-without-cli.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-without-cli.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-without-cli.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-windows.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-windows.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-windows.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-windows.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-windows.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-windows.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-windows.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-windows.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-windows.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-windows.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-windows.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-windows.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-windows.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-windows.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-windows.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-windows.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-windows.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-windows.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-windows.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-windows.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-windows.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-windows.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-windows.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-windows.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-windows.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-windows.html

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[111]

Once we log in to the AWS Console with valid credentials and navigate to the AWS
CodeCommit, you will see list of the available repositories. You choose any repository, then
it will show you the following screen:

In the AWS CodeCommit Console, the navigation pane contains the following features:

Code: Read the contents or review the file in the repository.

You can browse the content, review the files, and read the content of the file in the
repository. Currently it is displaying the default branch content. You can change
to a different branch by selecting it (here it is; Branch: DevBranch):

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[112]

You can choose the file from the list to see its contents. Here, I have selected
the Test.txt file:

Pull requests: This proposes a change on a repository or creates a pull request.
Review the content and comments:

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[113]

Once this request is created, you can see the list of all the Pull requests. You can
also view All open requests, All closed requests, and all the open and closed
requests you created:

Commits: Compare changes, review the history of commits, and browse code at
specific commits.

You can identify who and when made the changes to the repository, by browsing
the commit history of the repository.

You can view the history of commits in reverse chronological order. You can
review the commit history by branch or by tag and get details such as author,
date, and others.

As shown in the following screenshot, you can view the differences between a
commit and its parent. You can also select how the changes should display,
including show/hide whitespace changes, and whether to view the changes inline
(Unified view) or side by side (Split view):

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[114]

When you click on the commit message, you can see the changes on that file and
add, review, or reply the comments:

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[115]

Visualizer: Review the information for the specific commit.

It will show you the commit graph with a commit message. This commit message
is limited to displaying 80 characters.

You can also review the detailed information such as Commit ID and Parent ID
about a particular commit. It provides links to navigate to view the differences
between this commit and its parent:

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[116]

Compare: See the difference between two commits.

In Compare, you can view the differences between any two commits, including
branches, tags, and commit IDs.

Branches: Create and delete branch. View list of branch. Change default branch.

You can create a new branch by selecting a Create branch link. You can select the
Create Pull request which will redirect you to the Pull requests screen:

Tags: View list of tags in a repository.

It will show you the list of tags in your repository. It includes dates and messages
of the latest commit, referenced by tag.

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[117]

Settings: Manage the settings of the repository.

You can manage the settings for a current repository. It includes Repository
name, its Repository description, Default branch name, and Notification, and
creates triggers for repository events. If the repository is not required for cloning
and sharing, then you can delete the repository by selecting the Delete repository
button:

It will open the dialog box and you have to enter the name of the repository which
you want to delete:

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[118]

This is what we have learnt in AWS CodeCommit. In the next topic, we will learn about
AWS CodeBuild.

AWS CodeBuild – automating the build
AWS CodeBuild is a fully managed AWS service that compiles source code, runs test cases,
and produces ready-to-deploy software packages. It scales continuously and automatically
to process multiple builds concurrently so you now need to provision, manage, and scale
your own build servers.

AWS CodeBuild benefits
Fully managed service for build: It eliminates the need to set up, update, patch,
and manage build servers and software. There is no need to install, update, or
manage any software.
Scale automatically: It continuously scales to meet the requirements of the build
volume. It immediately processes the build whenever you submit. It can run the
separate build concurrently, so it means there are no build lefts in a queue.
Continuous Integration and Delivery enabled: AWS CodeBuild is part of the
AWS Code Service to create complete and automated software release workflows
for CI/CD. You can integrate AWS CodeBuild into your existing CI/CD
workflow.

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[119]

Extensible: You can use your own prepackaged build tools with AWS
CodeBuild; it means at runtime, it will use AWS CodeBuild.
Pay as You Go: You will pay for the number of minutes it takes to complete the
build. It will not charge you when it is idle.
Secure: In AWS CodeBuild, build artifacts are encrypted with customer-specific
keys which are managed by the AWS Key Management System (KMS). It is also
integrated with AWS IAM to assign user-specific granular permission to build
projects.

AWS CodeBuild features
Build and test the code:

AWS CodeBuild runs builds in pre-configured build environments which contain
the programming language, operating system, and build tools to complete the
task. You specify your source code's location and select the settings for the build.
AWS CodeBuild will build your code and store the artifacts in an Amazon S3
bucket, or upload to an artifact repository.

AWS CodeBuild provides pre-configured build environments for Java, Node.js,
Python, Go, Ruby, Android, and Docker.

You can package the runtime and tools for your own build environment into a
Docker image and upload to the public Docker Hub repository or Amazon EC2
Container Registry (Amazon ECR).

You can specify the location of your Docker image when you create a new build
project, and CodeBuild will pull the image to use it as the build project
configuration.

Configuration setting:

You can specify commands such as run unit test, package the code, and install
build to package, to be performed by AWS CodeBuild. YAML is a build-specific
file that includes the command to be run at each phase of the build. CodeBuild
helps you get started quickly with sample build specification files for some of the
common scenarios.

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[120]

You can select the best-suited compute type for your development needs. You
might choose a higher CPU and memory compute for faster builds, or the
minimum level of CPU and memory to complete the build.

AWS CodeBuild initiates builds in many ways. It can initiate builds after
connecting with AWS CodeCommit, Amazon S3, or GitHub. It can also connect
with AWS CodePipeline, which will automatically initiate a build whenever any
commit happens.

Continuous Integration and Continuous Delivery Workflows:

AWS CodeBuild is part of the AWS Code Service to help CI/CD. It provides on-
demand compute and a What You Pay is What You Use (WYPWYU) model to
build and integrate your code more frequently and to help you to find and fix
bugs at the development stage. It can easily integrate with your existing workflow
using build commands, source integrations, or Jenkins integrations. It will easily
plug with AWS CodePipeline to automate the build and test the code whenever
new commits happen in the repository.

Monitoring:

You can view detailed build details from AWS Management Console, SDKs, AWS
CLI, and APIs. AWS CodeBuild will show you build information such as Build
ARN, Build project, Repository, start and end time, Status, and many more.
CodeBuild streams build logs to Amazon CloudWatch log.

From AWS CodeBuild, you can create the build project using:

AWS Management Console
AWS CLI
AWS SDKs

Let's explore these options starting with AWS Console.

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[121]

Creating AWS CodeBuild project using AWS
Management Console
Please perform the following steps to create the AWS CodeBuild project using AWS
Management Console:

Log in with your AWS credentials and navigate to AWS CodeBuild Console.1.
If you see a welcome page, it means that there are no available Build projects. In2.
that scenario, select Get started. Otherwise, it will redirect you to the AWS
CodeBuild Console which is available with the projects along with repository
information.

Now, select Build projects from the left-side navigation pane, and then
select Create project:

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[122]

On the next screen you will see the Configure your project page. Specify your3.
build Project Name here and make sure that it is unique. You can add description
by clicking on the + sign which is not a mandatory field. You can add any project-
related description over here. You will see different kinds of Source provider
under Source: What to build and can select an appropriate one for the project.
Following is the different kind of available Source provider, available fields, and
description information:

Source provider Field and description

Amazon S3

Bucket: Bucket name where you have stored your project source
code.
S3 Object Key: This is the ZIP file name, which contains the source
code.
Insecure SSL: This is an optional field. It will ignore SSL warning
when it is enabled while connected to the project.

AWS
CodeCommit

Repository: You can select the source code repository from the
dropdown.
Git clone depth: This is an optional field. Select the shallow clone
with the number of commits or the full clone of your repository.
Build Badge: This is an optional field. You will enable it, then your
project's build status will be embeddable and visible.

Bitbucket

Repository: Click on the Connect to Bitbucket and it will redirect to
the Bibucket website. After completing the configuration it will
redirect to the AWS CodeBuild Console with the repository names.
Select the appropriate repository for this project.
Git clone depth and Build Badge: This information is the same as
mentioned in the previous row.

GitHub

Repository: Click on the Connect to GitHub and it will redirect to the
GitHub website. After completing the configuration it will be redirect
to the AWS CodeBuild Console with the repository names. Select the
appropriate repository for this project.
Git clone depth and Build Badge: This information is the same as
mentioned in the previous column.

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[123]

You can select the source provider as per the availability of your code from the
preceding options:

Now you can see the following two options for Environment4.
image under Environment: How to build:

Use an image
managed by AWS
CodeBuild

You have to choose the appropriate Operating System which is
managed by AWS CodeBuild from the drop down.

Specify a Docker
image

It will provide you with two drop-down boxes:
• Environment Type: To select the environment
• Custom Image Type: Two options are Amazon ECR or Other
In Custom Image Type, if you have selected Other, then you have
to provide the Custom image ID information such as <docker
repository>/<docker image name>:<tag>.
In Custom Image Type, if you have selected Amazon ECR, then it
will provide you with the drop down to select the Amazon ECR
Repository.

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[124]

For the Build Specification, you have two options to select:5.
If your source code contains the build specification file then you can
select Use the buildspec.yml in the source code root directory
You can Insert build commands and it will execute these commands in
the build phase:

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[125]

Select Type from the drop down, under Artifacts: Where to put the6.
artifacts from the build project section. It provides you with the following
options:

Amazon S3

If you leave Name blank then it will use the project name for the build
output ZIP or folder. In Path, you can mention the Artifacts Path. In
Namespace type, you can select the Build ID or None. Type the name of the
output bucket into Bucket name. This is a mandatory field.

No artifacts
You can select this option when you don't want to create any build artifacts.
It is useful to run build tests or to push the Docker image into the Amazon
ECR Repository.

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[126]

You can do following under Cache:7.

Amazon S3
You can use this option to store the cache. You can select the Bucket name
from the drop down. You can add information for the Path prefix that is
similar to directory name, and it is an optional field.

No cache If you don't want to use cache.

Cache will save considerable build time as it will store reusable pieces of the build
environment and can be used across builds:

Under the Service role section, there are two options:

Create a service role in your
account

Create a new service role if you don't have. Enter a
value for Role name to create service role.

Choose an existing service role
from your account

You can select an existing Role name from the
dropdown.

By default, this service role works with build projects only. When you use the
console to associate this role name with another project, the role name is updated
to work with the other build project. It can work with up to 10 build projects.

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[127]

You can select VPC under the VPC section. It will provide you with two options:8.

No
VPC You are not using VPC.

VPC
ID

If you are using the VPC than select the following information from the
dropdown:

Subnets
AWS CodeBuild will use these subnets to set up the VPC. You
can select multiple subnets for high availability from different
Availability Zones.

Security
Groups

AWS CodeBuild will use these Security Groups to work with the
VPC. Make sure that outbound connections are allowed by
selected Security Groups.

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[128]

Now expand Show advanced settings and you can configure the following9.
settings. The following fields are optional:

Timeout You can specify between 5–480 minutes and it will stop after that if
the build is not complete.

Encryption key

AWS is managing the Customer Master Key (CMK) for Amazon S3.
It will help Amazon S3 to encrypt the output artifacts, so in this case
you can leave it blank. But if you want to use the customer-managed
CMK than you can provide the ARN. It will help the customer-
managed CMK to encrypt the output artifacts.

Artifacts
packaging

You can select ZIP if you selected Amazon S3 for the Artifacts type
earlier. It will create a ZIP file with build output. Else you can select
None.

Compute type Select the best suitable option for your application.

Environment
variables

You can add environment variables by adding the name, value, and
type. You can use Add row to add another environment variable. You
can create a parameter for the type.

Tags
You can type the name and its value of tags to manage the
configuration service and its cost. You can select Add row to add a
new tag.

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[129]

Choose Continue:10.

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[130]

On the Review page, do one of the following:11.
Select Save and build to run the build.

It will redirect you to the Start new build page where you can select
the Branch name. It will display the Source version automatically. You can
update the output Artifacts information under Show advanced options. The
new environment variables will be added or updated under
the Environment variables options:

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[131]

You will see the build information once you click on the Start build button. It will
display some information like Build, Build details and Phase details. Under
the Build details section, you can click on the Build artifacts and navigate to the
Amazon S3 bucket where your build is stored. You can see different phases of the
build under Phase details such as Name, Status, Duration, and Completed time:

Select Save to save the build project without running it.

Navigate to the Build projects and select the projects you want to Update, Delete,
or Build history by selecting Actions:

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[132]

Create the build project using AWS CLI.

I assume that you have already installed AWS CLI. If it is not installed, then you
can download it from https:/ ​/​docs. ​aws. ​amazon. ​com/ ​cli/ ​latest/ ​userguide/
installing. ​html and install it. You can verify AWS CodeBuild services on AWS
CLI by executing the aws codebuild help command.

You can create the project with AWS CodeBuild by executing this command on
AWS CLI:

aws codebuild create-project --generate-cli-skeleton

It will display JSON-format data as the output. Save the output into the create-
project.json file on the local machine and add values for the required field. It
will look like the following file:

{
 "name": "TestCodeBuild",
 "description": "Description of TestCodeBuild ",
 "source": {
 "type": "CODECOMMIT",
 "location":
"https://git-codecommit.us-east-1.amazonaws.com/v1/repos/Your_Repo_
Name_Here",
 "buildspec": "",
 "auth": {
 "type": "OAUTH",
 "resource": ""
 }
 },
 "artifacts": {
 "type": "S3",
 "location": "S3-BUCKET-LOCATION",
 "path": "",
 "namespaceType": "NONE",

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[133]

 "name": "myprj1",
 "packaging": "NONE"
 },
 "environment": {
 "type": "LINUX_CONTAINER",
 "image": "aws/codebuild/java:openjdk-6",
 "computeType": "BUILD_GENERAL1_SMALL",
 "environmentVariables": [
 {
 "name": "your_environment_variable_name",
 "value": "your_environment_variable_value"
 }
]
 },
 "serviceRole": "arn:aws:iam::XXXXXXXXXXXX:role/service-
role/codebuild-myprj-service-role",
 "timeoutInMinutes": 10,
 "encryptionKey": "arn:aws:kms:us-east-1:
XXXXXXXXXXXX:alias/aws/s3",
 "tags": [
 {
 "key": "tag-key",
 "value": "tag-value"
 }
]
 }

The following table gives you information about different fields. In the
table, [R] represents Required field and [O] represents Optional field:

name [R] This is build project name. It must be unique.

description [O] This is the description of the build project.

source-type [R] Source code repository type. It has the following valid values:
Amazon S3/ CODECOMMIT/ BITBUCKET/ GITHUB

source-location
It contains HTTPS URL. This URL contains the source code and build
specification file for AWS CodeCommit, GitHub, and BitBucket. For
Amazon S3, it contains the bucket name.

buildspec [O]

If the value is not provided or is empty then the source code must
contain the buildspec.yml file in its root directory.
If the value is provided, then it will be an inline build spec definition
file or it has alternate build spec file path relative to the value of the
built-in environment variable (CODEBUILD_SRC_DIR).

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[134]

Auth If you have selected GITHUB as source-type then specify OAUTH as
value.

This artifacts object has the following output artifact settings:

artifacts-type [R] It is output artifact. CODEPIPELINE, NO_ARTIFACTS, and S3 are
valid values.

artifacts-location [R] If artifacts-type is set to S3 then specify output bucket name.

Path [O] If artifacts-type is set to S3 then path inside artifacts-location.

namespaceType [O] If artifacts-type is set to S3 then it has BUILD_ID and NONE as valid
values.

artifacts-name [R] If artifacts-type is set to S3 then it is name of build output ZIP file or
folder.

Packaging [O]
If artifacts-type is set to S3 then ZIP and NONE are valid values. If ZIP
is mentioned then it will create build output in ZIP file. If NONE is
mentioned then it will contain the build output.

This environment object contains information about the project's build environment settings. It
includes:

environment-type[R] Build environment type with valid value as LINUX_CONTAINER.

image [R]
Build environment is using the Docker image name. For example,
AWS CodeBuild uses aws/codebuild/java:openjdk-6 for Java version
6.0.

computeType [R]

Build environment uses a different category based on the number of
CPU cores and memory which
includes BUILD_GENERAL1_LARGE, BUILD_GENERAL1_MEDIUM,
and BUILD_GENERAL1_SMALL.

You can specify environment variables with this optional environmentVariable array. It includes:

environmentVariable-name
[O] This is the name of the environmentVariables.

environmentVariable-value
[O] This is the value of the environmentVariables.

serviceRole [R] This is the ARN of the service role used to interact with the service
from AWS CodeBuild on behalf of the IAM user.

timeoutInMinutes[O] You can specify 5 to 480 min. It the build is not completed than it will
stop after the mentioned minutes.

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[135]

encryptionKey [O]

Leave it blank if you want to use the AWS-managed customer master
key (CMK) for Amazon S3 to encrypt the build output artifacts or type
the ARN of the CMK, if you want to use customer-managed CMK to
encrypt the build output artifacts.

Tags [O]
You can type the name and its value of tags to manage the
configuration service and its cost. A tag is expressed by an array that
contains a key- value pair.

After adding the value into the JSON file, execute the following command on AWS CLI:

aws codebuild create-project --cli-input-json
file://D:\AWS_CodeBuild\create-project.json

Once it executes the command successfully, you will see the following JSON response on
AWS CLI:

{
 "project": {
 "name": "TestCodeBuild",
 "serviceRole": "arn:aws:iam:: XXXXXXXXXXXX:role/service-
role/codebuild-myprj-service-role",
 "tags": [
 {
 "value": "tag-value",
 "key": "tag-key"
 }
],
 "artifacts": {
 "packaging": "NONE",
 "name": "myprj1",
 {
 "project": {
 "name": "TestCodeBuild",
 "serviceRole": "arn:aws:iam:: XXXXXXXXXXXX:role/service-
role/codebuild-myprj-service-role",
 "tags": [
 {
 "value": "tag-value",
 "key": "tag-key"
 }
],
 "artifacts": {
 "packaging": "NONE",
 "name": "myprj1",
 "namespaceType": "NONE",
 "location": "S3-BUCKET-NAME",

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[136]

 "path": "",
 "type": "S3"
 },
 "lastModified": 1514801454.38,
 "timeoutInMinutes": 10,
 "created": 1514801454.38,
 "environment": {
 "computeType": "BUILD_GENERAL1_SMALL",
 "image": "aws/codebuild/java:openjdk-6",
 "type": "LINUX_CONTAINER",
 "environmentVariables": [
 {
 "name": "your_environment_variable_name",
 "value": "your_environment_variable_value"
 }
]
 },
 "source": {
 "buildspec": "",
 "type": "CODECOMMIT",
 "location":
"https://git-codecommit.us-east-1.amazonaws.com/v1/repos/Repo-Name",
 "auth": {
 "resource": "",
 "type": "OAUTH"
 }
 },
 "encryptionKey": "arn:aws:kms:us-east-1:
XXXXXXXXXXXX:alias/aws/s3",
 "arn": "arn:aws:codebuild:us-east-1:
XXXXXXXXXXXX:project/TestCodeBuild",
 "description": "Description of CodeBuild"
 }
 }

You can verify the created build project on the AWS CodeBuild Console.

List of build project names
The following command will display the list of build project names:

aws codebuild list-projects --sort-by sort_by --sort-order sort_order --
next-token next_token

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[137]

You need to change the placeholder:

sort_by: It is a list of build project names. It has valid values:
CREATED_TIME: List of build project names based on the creation
time of each build
LAST_MODIFIED_TIME: List of build project names based on the
last modification time of each build
NAME: List of build project names based on the name of each build
project

sort_order: List of build project names. Valid values are ASCENDING and
DESCENDING.
next_token: If there are more than 100 items in the build project names list, then
only the first 100 items are returned along with a unique string which is
called next_token. For less than 100 items, it will not display next_token. For
example, if you might run the following command:

aws codebuild list-projects --sort-by NAME --sort-order ASCENDING

You might get similar kind of output:

Viewing the build project's details
The following command will display the build project's details:

aws codebuild batch-get-projects --names project_names

Before performing the preceding command you need to change the placeholder like:

project_names: This is the required parameter. Specify the build project's name
to view its details. A maximum of 100 build project names can be specified to
view their details. You can separate those names with spaces.

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[138]

For example, if you might run the following command:

aws codebuild batch-get-projects --names NewProject

You might get a similar kind of output. Ellipses (…) mean that the data has been omitted for
brevity:

{
"projectsNotFound": [],
"projects": [
{
...
"name": “NewProject”,
 ...
}
]
}

Updating the build project's details
To update the project on AWS CodeBuild, execute the following command on AWS CLI:

aws codebuild update-project --generate-cli-skeleton

It will display JSON-format data as output. Save the output into the update-
project.json file on your local computer and update the values, as per the requirements
mentioned in Creating the build project using AWS CLI section.

 After adding the value into the JSON file, execute the following command on AWS CLI:

aws codebuild update-project --cli-input-json
file://D:\AWS_CodeBuild\update-project.json

Once it executes the command successfully you will see the JSON response mentioned in
Creating the build project using AWS CLI.

Deleting the build project
The following command will delete the build project:

aws codebuild delete-projects --name project_names

CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing Chapter 4

[139]

Before performing the preceding command you need to change the placeholder like:

project_names: This is the required parameter. Specify the build project's name
that you want to delete. It will not display any message or error, if successful.

Summary
We have now finished looking at AWS CodeCommit and AWS CodeBuild, which are part
of AWS Developer tools, to achieve version control and Continuous Integration and
Continuous Deployment. I haven't covered the testing part here; it will be part of the next
chapter, included with AWS CodePipeline.

In the next chapter, we will discuss more about AWS CodeDeploy, CodePipeline, and
CodeStar to achieve Continuous Integration (CI) and Continuous Deployment (CD) on an
AWS platform.

5
CI/CD in AWS Part 2 –

CodeDeploy, CodePipeline, and
CodeStar

In the previous chapter, we discussed AWS CodeCommit and CodeBuild. In this chapter,
we will discuss other AWS code family tools such as AWS CodeDeploy, AWS
CodePipeline, AWS CodeStar, and AWS X-Ray. AWS CodeDeploy is a fast, reliable, and
consistent way to deploy the application.

AWS CodePipeline automates the deployment process to model and visualize the code for
new updates and features. AWS CodeStar is used to develop, build, and deploy the
application quickly on AWS from the AWS CodeStar console.

AWS X-Ray helps developers to easily debug and analyze the distributed applications.

In this chapter, we will cover the following topics:

AWS CodeDeploy
AWS CodePipeline
AWS CodeStar
AWS X-Ray

Let's explore each topic and see how they can be used to achieve CI/CD on AWS.

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[141]

AWS CodeDeploy
The AWS CodeDeploy service will help to automate the deployment of a variety of
different services that includes Amazon EC2 instances, AWS Lambda functions, and
instances that are running on-premises. It scales from a single Lambda function to hundreds
of thousands of EC2 instances. AWS CodeDeploy helps in the following ways to make
deployment easier, as it:

Releases new features quickly
Avoids downtime for application deployment
Handles complexity
Eliminates manual operations

Now, we will find out more about the AWS CodeDeploy service with the following topics:

AWS CodeDeploy benefits
Compute platforms and deployment options for AWS CodeDeploy
AWS CodeDeploy – a sample application deployment on a Windows Server

In the next section, we will discuss AWS CodeDeploy benefits.

AWS CodeDeploy benefits
The following are the benefits of AWS CodeDeploy. Let's understand each one of them very
carefully:

Automatic deployment: AWS CodeDeploy helps to deploy your code rapidly,
reliably, and fully automatically. You can deploy your application consistently on
different environments such as development, test, and production.

Repeat deployments: For a diverse group of instances, AWS
CodeDeploy enables application deployment to be repeated easily,
which means getting rid of manual deployment steps. It increases
the reliability and speed of the delivery process. You can use AWS
CodeDeploy to deploy applications by using a command-based
install or using a file. You can also reuse existing code for the setup;
your code for the setup can deploy consistently and test the
updates on different environments for Lambda functions or
Amazon EC2 instances.

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[142]

On-premise deployments: AWS CodeDeploy will allow you to
automate deployments across different environments on any
instances using it. It also includes your data center instances and it
will enable you to deploy applications consistently using a single
service.
Automatically scale: AWS CodeDeploy allows you to integrate the
deployment and scale activities that keep applications up to date in
the production environment. AWS CodeDeploy can integrate with
Auto Scaling for Amazon EC2 instances. With Auto Scaling, you
can define the conditions to scale Amazon EC2 instance capacity.
AWS CodeDeploy will notify you when new instances launch into
the Auto Scaling group, and it will perform deployment operations
on those instances, and then add them to the load balancer. For
AWS Lambda, whenever response traffic is increased or decreased,
it will integrate with AWS CodeDeploy to ensure that the latest
code is deployed.

Minimize downtime: It helps to avoid or minimize the downtime and maximize
the availability of the application during deployment. It introduces the updates
incrementally and helps to track the deployment's health, according to the
configurable rules.

Rolling and blue/green updates: AWS CodeDeploy can perform
the new revision upgrades without any downtime. It performs
rolling updates for the Amazon EC2 instances group, where a few
instances are taken offline for deployment at any time. It works
progressively, so a few of the instances are available to serve the
traffic continuously. You can use AWS Lambda functions to route
the traffic gradually to a newer version from the older version. It
also performs blue/green deployments where a new Amazon EC2
instance set is available with the new revision of code. With AWS
CodeDeploy, you can reroute traffic to new instances from old
production instances.
Stop and rollback: For any process, you can stop application
deployment using AWS Management Console, AWS SDK, and
AWS CLI, at any time. Once you have stopped the deployment,
you can redeploy the same version later. Also, if you have rolled
back the deployment, you can redeploy the previous version, later.

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[143]

Deployment's health track: The deployment's health track can
work with rolling updates, so your applications will be highly
available during the deployment phase. If bad updates are
deployed, then your application will be down for an unspecified
time. To keep applications highly available during the
deployments, you need to track the health status of deployments.
AWS CodeDeploy will monitor the deployment and it will stop if
several available updates fail.

Control centrally: You can use AWS Management Console or AWS CLI to launch
the deployment and track its status. AWS CodeDeploy provides you with a
detailed report. You can create push notifications from Amazon Simple
Notification Service (SNS) to get live deployment updates.

Control and monitoring: AWS Management Console, SDKs, and
AWS CLIs are used to launch, monitor, and control the
deployments.
Your deployment history: AWS CodeDeploy tracks your
deployment history and stores it. You can view the current
deployed version by deployment groups, changed history, and
past deployment's success rates. You can also view a deployment's
success and failure from the history.
Multiple groups for deployment: You can deploy your application
in multiple deployment groups. Deployment groups uses different
configuration environments. Once it matches configuration with
specific environments like staging or production environments. It
will deploy the code to the staging environment and again deploy
the same code after verification to the production environment.

Adopt easily: AWS CodeDeploy works with any kind of application; it is
platform, architecture, and language agnostic. A user will get the same
experience while deploying to an Amazon EC2 instance or AWS Lambda. It can
easily integrate with a continuous delivery tool chain or existing software release
process. You can reuse your existing code for setup.

Architecture and language agnostic: AWS CodeDeploy uses a
command-based or file-based install model to deploy the
application. It uses a configuration file to map application files or
AWS Lambda functions, known as an AppSpec file. This file is
used to run tests, actions, and verification for each events in a life
cycle.

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[144]

Tool chain integration: AWS CodeDeploy API can easily integrate
application deployments with an existing delivery tool chain. AWS
CodeStar, AWS CodePipeline, and other AWS services can provide
built-in integration support with AWS CodeDeploy for CI/CD.

Compute platforms and deployment options for
AWS CodeDeploy
AWS CodeDeploy supports the following compute platforms and deployment options to
deploy the application.

Compute platforms
The compute platforms are as follows:

Amazon EC2/on-premises: Amazon EC2 or an on-premises instance contains
executable files, images, configurations files, and more
AWS Lambda: AWS Lambda is used to deploy the updated or changed version
of the function

Deployment options
The deployment options are as follows:

In-place deployment: In this type of deployment:
The application in the deployment group for each instance is
stopped
An updated application version is installed
A new application version is started and validated

AWS Lambda cannot use this type of deployment.

Blue/green deployment: This type of deployment is used for both the compute
platforms. In this type of deployment, traffic is rerouted to a new set of instances
from the old set of instances.

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[145]

Now, let's deploy a sample application with AWS CodeDeploy to a Windows Server.

AWS CodeDeploy – sample application
deployment on a Windows Server
In this sample application, you will use different AWS services such as IAM, Amazon EC2,
Amazon S3, and AWS CodeDeploy. You will deploy a single page web application on a
Windows Server using Internet Information service (IIS) as the web server on a single
Amazon EC2 Windows instance. For that, you have to execute the following steps to deploy
your applications successfully.

Step 1 – prerequisite configurations for AWS
CodeDeploy
You need to complete the following prerequisite configurations before you start to use AWS
CodeDeploy:

Creating a custom AWS CodeDeploy policy for the IAM user: You can attach1.
the following IAM role to your existing user or new user to use AWS
CodeDeploy. It will grant access for EC2/on-premises instances, Lambda
functions, and other services:

{
 "Version": "2012-10-17",
 "Statement" : [
 {
 "Effect" : "Allow",
 "Action" : [
 "autoscaling:*",
 "codedeploy:*",
 "ec2:*",
 "lambda:*",
 "elasticloadbalancing:*",
 "iam:AddRoleToInstanceProfile",
 "iam:CreateInstanceProfile",
 "iam:CreateRole",
 "iam:DeleteInstanceProfile",
 "iam:DeleteRole",
 "iam:DeleteRolePolicy",
 "iam:GetInstanceProfile",
 "iam:GetRole",

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[146]

 "iam:GetRolePolicy",
 "iam:ListInstanceProfilesForRole",
 "iam:ListRolePolicies",
 "iam:ListRoles",
 "iam:PassRole",
 "iam:PutRolePolicy",
 "iam:RemoveRoleFromInstanceProfile",
 "s3:*"
],
 "Resource" : "*"
 }
]
}

Creating an IAM role for the Amazon EC2 instance: You must create an instance2.
profile to launch the Amazon EC2 instance, which is compatible with AWS
CodeDeploy. It will give permission to access GitHub repositories or Amazon S3
buckets. You can create the policy from the following code and later create a role
with this policy and attach it to your Amazon EC2 instance:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "s3:Get*",
 "s3:List*"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

Creating a service role for AWS CodeDeploy: To access AWS resources, you3.
have to create a service role in IAM and give permission for AWS resources. For
AWS CodeDeploy, you have to provide permission to read the tags or group
names for Auto Scaling that are associated with the EC2 instance. You can attach
AWSCodeDeployRole, which is an AWS-supplied policy, to provide these
permissions. You can use trust relationships to restrict the service role from
accessing to some of the endpoints, such as with the following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[147]

 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "codedeploy.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

Once you create this role, note down the value of the Role ARN field.

Step 2 – launch a Windows Server Amazon EC2
instance
You need to consider a few configuration settings when you create an instance of a
Windows Server Amazon EC2. You have to select the proper IAM role for the EC2 instance
that was created in Step 1– prerequisite configurations for AWS CodeDeploy:

Add tags information when you create the EC2 instance. You will need this information
when creating the deployment group for AWS CodeDeploy:

Under the Configure Security Group tab, select HTTP protocol with RDP:

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[148]

After you have successfully launched the Amazon EC2 instance, please follow the
instructions to connect it:

Select the Windows Server instance from the list, select action and click on1.
Connect. Click on the Get Password button.
Now select Choose File and browse to the Amazon EC2 instance key pair2.
associated with this instance and open it.
Click on the Decrypt Password button and save this.3.
You can connect the Windows instance using your favorite Remote Desktop4.
Client or select the Download Remote Desktop File option and open it.
Choose Connect, if it prompts that the publisher of the remote connection can't5.
be identified.
If you are using your Remote Desktop Client with administrator as a6.
username, type the password that you have saved in previous steps.
Choose Yes, if it prompts that the identity of the remote computer cannot be7.
verified.
Now, you will be able to see the Windows Server Amazon EC2 instance desktop.8.

AWS CodeDeploy can't deploy on an Amazon EC2 instance if you stop or
terminate it.

Step 3 – configure source content to deploy to the EC2
instance
For this sample application, you have to add a source file to the EC2 instance. You can
create the following files under the C:\Packt directory or any other directory. If you use
another directory name, use that name in the following steps:

Sample web page: Create a simple web page, index.html, under1.
the C:\Packt directory and add the following contents:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
 <head>
 <title>Hi From Packt!!!</title>
 </head>
 <body>

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[149]

 <h1>Hi From Packt!!!!!</h1>
 </body>
</html>

Script to run the application: Now you need to create a script, before-2.
install.bat, which AWS CodeDeploy uses to set up the web server on the
Amazon EC2 instance. Add the following code into this before-install.bat
and save it. This script will launch Windows PowerShell, which is a tool for task
automation and configuration management and helps to install IIS:

REM Install Internet Information Server (IIS).
c:\Windows\Sysnative\WindowsPowerShell\v1.0\powershell.exe -Command
Import-Module -Name ServerManager
c:\Windows\Sysnative\WindowsPowerShell\v1.0\powershell.exe -Command
Install-WindowsFeature Web-Server

Application specification file: In addition to the preceding files, index.html3.
and before-install.bat, you have to add an application specification file. It
must be called appspec.yml.

Now let's have a brief look at this file. This appspec.yml file uses a YAML-
format and it describes:

The operating system where your instance is running, such as
Linux or Windows
The source file location of the file you want to deploy and the
destination file location where you want to deploy the file
The life cycle event hooks that specify which scripts are to be
executed on the instance when deployed

This appspec.yml contains the following sections:

Header section (required): This contains version and os sections, where4.
version is any arbitrary number to keep track of revisions, and os is the
operating system instance for deployment and contains two options – linux or
windows:

Version: 1.0
os: windows

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[150]

File section (required): This will execute during the install phase of life cycle5.
events. It contains the source and destination of the files you want to install
during the deployment:

files:
 - source: \index.html
 destination: c:\inetpub\wwwroot

Permission section (optional): This section will assign permissions to files and6.
directories after installation. It applies to Amazon Linux, Ubuntu, and RHEL
instances; it does not include the Windows Server, so please don't include the
following section in your appsec.yml file. It contains the following parameters:

object: This is the required section, destination file, or directory where you want
to set the permissions
pattern: Specifies a pattern to set the permission for certain types of files
except: Specifies exceptions for the preceding pattern
owner: Owner of the object (if source settings is blank)
group: Name of the group for the object (if source settings is blank)
mode: Sets the permissions applied to the object (such as the chmod command)
acls: Access control list entries applied to the object
context: This applies to Security-Enhanced Linux (SELinux) enabled instances:

user: The SELinux user
type: The SELinux type name
range: The SELinux range specifier

type: Specifies if the object is a file or a directory:
file: Permissions will be applied only
to an object's files
directory: Permissions will be
applied recursively to all directories,
and files that are within the object

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[151]

You can set the permissions as in the following example and strictly it will
not apply to this example as we are using Windows instances.:

permissions:
 - object: /var/www/html
 pattern: "*.html"
 except: [/var/www/html/index.html]
 owner: atul
 group: writers
 mode: 644
 acls:
 - u:vaibhav:rw
 - u:hiten:rw
 - m::rw
 context:
 user: unconfined_u
 type: httpd_sys_content_t
 range: s0
 type:
 - file

Lifecycle event hooks (optional): The following section contains different7.
deployment life cycle event hooks:

ApplicationStop: This will occur prior to the application being
downloaded

When you deploy your application for the first time then it will not run
because appspec.yml is not available.

DownloadBundle: The AWS CodeDeploy agent will copy version
files to a temporary location listed here:

On Windows Server Amazon EC2
instances: C:\ProgramData\Amazon\CodeDeploy\
deployment-group-id\deployment-
id\deployment-archive

On Amazon Linux, Ubuntu Server, and RHEL
Amazon EC2 instances: /opt/codedeploy-
agent/deployment-root/deployment-group-
id/deployment-id/deployment-archive

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[152]

BeforeInstall: Preinstall tasks, such as backing up the version or
decrypting the files, can be specified in this event
Install: The AWS CodeDeploy agent copies files to a destination
folder from the temporary location using this event and it is
reserved for it; you cannot use this event to run the scripts
AfterInstall: You can change file permissions or application
configurations when executing this event
ApplicationStart: This event restarts those services that were
stopped during an ApplicationStop event
ValidateService: This event verifies that deployment has been
successfully completed and this is the last event in the
development life cycle.

It contains location, timeout, and runas parameters under the
deployment life cycle event name. You can specify the location of the script
filename that you want to run in location, the amount of time you want to
execute the script in timeout, and the username in runas:

hooks:
 BeforeInstall:
 - location: \before-install.bat
 timeout: 900
 runas: root

The following are the environment variables that can be accessed from the hook scripts,
during the deployment life cycle event:

APPLICATION_NAME: The current AWS CodeDeploy application name, for
example, Packt_CodeDeploy_Demo
DEPLOYMENT_ID: The current deployment ID that has been assigned by AWS
CodeDeploy, for example, d-BLAG5O2SQ
DEPLOYMENT_GROUP_NAME: The current AWS CodeDeploy deployment group
name, for example, Packt_Deployment_Group
DEPLOYMENT_GROUP_ID: The current deployment group ID that has been
assigned by AWS CodeDeploy, for example, cc9904f4-6e55-46d4-a39f-
ba6a80742335

LIFECYCLE_EVENT: The current deployment life cycle event name, for example,
ApplicationStart

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[153]

In this file, the location and number of spaces between each of the items are very important.
If the spaces are incorrect, AWS CodeDeploy will produce an error, which is difficult to
debug.

Step 4 – upload application to Amazon S3
In this step, we will see how to prepare and upload the source code to the location from
where AWS CodeDeploy can deploy. It will cover these two steps:

The provision of an S3 bucket with IAM user permission
The preparation and bundling of the application's file, and push to the S3 bucket

Provision of S3 bucket with IAM user permission
I am assuming that you have created a new bucket or are using an existing bucket, and have
also given access permission to this bucket and your IAM user. You must give the following
permission through the S3 bucket policy, to upload files to any directory in the Amazon S3
bucket with the AWS account number, 123412341234:

{
 "Statement": [
 {
 "Action": [
 "s3:PutObject"
],
 "Effect": "Allow",
 "Resource": "arn:aws:s3:::codedeploydemoapp/*",
 "Principal": {
 "AWS": [
 "123412341234"
]
 }
 }
]
}

You must also attach the following policy to the S3 bucket policy to allow download
requests from each Amazon EC2 instance:

{
 "Statement": [
 {
 "Action": [
 "s3:Get*",

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[154]

 "s3:List*"
],
 "Effect": "Allow",
 "Resource": "arn:aws:s3::: codedeploydemoapp/*",
 "Principal": {
 "AWS": [
 "arn:aws:iam::12345TESTING:role/CodeDeployUser"
]
 }
 }
]
}

To upload the revision to the S3 bucket, your account must have the proper permissions or
you can specify them through the IAM policy. The following policy will allow the IAM user
to upload the revisions in the codedeploydemoapp bucket:

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":["s3:PutObject"],
 "Resource":"arn:aws:s3::: codedeploydemoapp /*"
 }
]
}

Preparation and bundling of the application's file and pushing to the S3
bucket
Make sure you have all three files under your Packt folder that was created in Step 3 –
configure source content to deploy to the EC2 instance:

C:\
 |-- Packt\
 |-- appspec.yml
 |-- before-install.bat
 |-- index.html

Open the CLI and switch to the C:\Packt folder. Now, execute the following command to
create the application called Packt_CodeDeploy_Demo on AWS CodeDeploy:

aws deploy create-application --application-name Packt_CodeDeploy_Demo

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[155]

Once you execute this command successfully, it will generate the application ID:

Now, execute the following push command to bundle the file in the archive and upload the
revision to Amazon S3. It will register the uploaded revision with AWS CodeDeploy:

aws deploy push --application-name Packt_CodeDeploy_Demo --s3-location
s3://packtdemo/PacktCodeDeploy.zip --ignore-hidden-files

It will create the ZIP archive file called PacktCodeDeploy.zip and upload the revision to
the packtdemo bucket:

Step 5 – deploy application
In this step, you will deploy the revision that you uploaded to Amazon S3 in Step 4– upload
application to Amazon S3. You can deploy this revision from AWS CLI or the AWS
CodeDeploy console, and you can monitor the progress of your deployment. Once it
deploys successfully, you can verify the results in the browser. Let's look at how we can do
the following:

Deploy and monitor the application from AWS CLI
Deploy and monitor the application from AWS Management Console

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[156]

To deploy and monitor the application from AWS CLI
To deploy the application, you need to create deployment groups. You can use the service
role ARN that you created in Step 1 – prerequisite configurations for AWS CodeDeploy. From
this service role, AWS CodeDeploy will get the permission to access the Amazon EC2
instance to expand its tags.

Now, call the create-deployment-group command to create the deployment group
called Packt_Deployment_Group, associated with the application
called Packt_CodeDeploy_Demo, the AWS instance tag
called PacktCodeDeployDemo, and the deployment configuration
called CodeDeployDefault.OneAtATime with the service role ARN:

aws deploy create-deployment-group --application-name Packt_CodeDeploy_Demo
--deployment-group-name Packt_Deployment_Group --deployment-config-name
CodeDeployDefault.OneAtATime --ec2-tag-filters
Key=Name,Value=PacktCodeDeployDemo,Type=KEY_AND_VALUE --service-role-arn
arn:aws:iam::XXXXXXXXXXXX:role/PacktCodeDeployServiceRole

This will create the deployment group and display the deploymentGroupId, as shown in
the following screenshot:

Now, execute the create-deployment command with the application
name Packt_CodeDeploy_Demo, the deployment configuration
name CodeDeployDefault.OneAtATime, the deployment group
name Packt_Deployment_Group that we created in the previous command, and the
application revision name PacktCodeDeploy.zip, in the packtdemo S3 bucket:

aws deploy create-deployment --application-name Packt_CodeDeploy_Demo --
deployment-config-name CodeDeployDefault.OneAtATime
--deployment-group-name Packt_Deployment_Group
--s3-location bucket=packtdemo,bundleType=zip,key=PacktCodeDeploy.zip

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[157]

This will generate the deploymentID that you can use to get the status of your deployment:

You can get the list of deployment IDs by calling the list-deployments command and
passing the application name, Packt_CodeDeploy_Demo, and the deployment group
name, Packt_Deployment_Group:

aws deploy list-deployments --application-name Packt_CodeDeploy_Demo --
deployment-group-name Packt_Deployment_Group --query "deployments" --output
text

You will see the deployment IDs generated by the previous commands:

Now, to check the status of your deployment, (success or failure), execute the get-
deployment command with the deployment ID:

aws deploy get-deployment --deployment-id d-H81YVFHVQ --query
"deploymentInfo.status" --output text

It will return the result as follows:

If the deployment status is failed, you can call the list-deployment-instances and
get-deployment-instance commands to troubleshoot the problem. After a successful
deployment, you can verify your installation from the public DNS address of your EC2
instance. To get the public DNS address, select your EC2 instance and in the description tab,
you will see the value for your public DNS. Enter this DNS address in the web browser and
you will see your index.html:

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[158]

To deploy and monitor the application from AWS Management Console
In this section, we will follow these steps to deploy and monitor the application:

Log in to AWS Management Console and select the AWS CodeDeploy service.1.
It will display the Get Started Now button for a first time user. If any2.
applications have already been created, then you will see the list of applications.
Click on the Create Application button.
You will see the following screen. Type the value for the application name and3.
deployment group name. The compute platform has two options: EC2/On-
premises and AWS Lambda. The In-place deployment option has been selected
as the deployment type for this demo application:

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[159]

Under the Environment configuration section, select the Amazon EC2 instances4.
tab. Add the appropriate key and value from the drop-down list for the Tag
group 1 section. You will see one instance, as it confirms that AWS CodeDeploy
has found matching Amazon EC2 instances. Under the Matching instances
section, it will display the status for the selected EC2 instance, as shown in the
following screenshot:

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[160]

The Deployment configuration section is a set of rules, which specifies how fast5.
an application will be deployed and success/failure conditions of the deployment.
You can select from the default list or customize it by choosing the Create
Deployment Configuration option. Here, we have selected
the CodeDeployDefault.OneAtATime option:

Under the advanced option, you can create triggers, alarms, and define6.
conditions for the rollbacks.
Under the Service role ARN drop-down list, select the appropriate service role7.
ARN, and then click on the Create application button:

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[161]

Once the application has been created successfully, you will see the following8.
screenshot:

It will also create the deployment group. Now, select the newly created9.
deployment group and select the Deploy new revision option from the Actions
tab, as shown in the following screenshot:

You will be redirected to the Create deployment screen where you have to select10.
the information for the application, deployment group, and repository type. For
the revision location, include the Amazon S3 revision file location URL. It will
detect the file type as .zip, if it does not detect it automatically, then select it
from the drop-down list. Select CodeDeployDefault.OneAtATime from the
Deployment configuration drop-down list. Choose Deploy once you select/fill
up all the information:

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[162]

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[163]

During the deployment, you can track the status and also stop it, if necessary:11.

Once deployment is done successfully, you will see the following screen:12.

On the Instance activity section, you will see the deployment information, such13.
as Instance ID, Start time, End time, Duration, Status, Most recent event, and
Events:

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[164]

You will see the following screen when you click on the View events link. It gives14.
details of all the events that have occurred during deployment:

You can verify the installation the same way you did for AWS CLI.15.

Step 6 – update and redeploy application
To update and redeploy the application, you have to make changes to your code and push
it to your Amazon S3 bucket. Once you update the code, then you have to execute
the create-deployment command again to deploy new things. You can follow the
preceding steps to complete the deployment.

Step 7 – clean up the application and related resources
Once you complete the preceding tutorial, you have to clean up the resources, such as
Amazon S3, AWS CodeDeploy, and the Amazon EC2 instance. Here, you will see how to
clean up the resources for AWS CodeDeploy. From AWS CLI, you can call the delete-
application command to delete the Packt_CodeDeploy_Demo application from the AWS
CodeDeploy. It will delete all the associated records for deployment groups and
deployments:

aws deploy delete-application --application-name Packt_CodeDeploy_Demo

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[165]

From the AWS CodeDeploy console, select the application that you want to delete. It will
navigate to the application details page. Select the Delete application option and it will
prompt you to enter the name of the application for confirmation. Enter the application
name and then choose to delete:

Great!!! You have successfully completed deployment with AWS CodeDeploy using an
Amazon EC2 Windows instance and Amazon S3. In the next tsection, we will discuss AWS
CodePipeline.

AWS CodePipeline
AWS CodePipeline is a CI/CD service for a reliable and fast software release process. As per
your release model, AWS CodePipeline will build, test, and deploy the code, if there is any
code change. It enables the faster and reliable delivery of features and updates. AWS
CodePipeline can easily integrate with AWS services and other DevOps platforms. This
section on AWS CodePipeline is divided into the following topics:

AWS CodePipeline benefits
AWS CodePipeline features
Creating an AWS CodePipeline from the console
Creating an AWS CodePipeline from AWS CLI

AWS CodePipeline benefits
Let's start with AWS CodePipeline benefits, which are as follows:

AWS CodePipeline allows you to rapidly deliver new features to users by
automating the software release process.
You can improve quality by easily testing each code change and catching bugs
while they are simple and small to fix.
AWS CodePipeline provides a graphical user interface to model different stages
for the software release process.

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[166]

AWS CodePipeline is a fully managed service that connects to existing tools and
systems. You can immediately start your software release process with AWS
CodePipeline. There is no need to set up or provision for servers.
AWS CodePipeline is easily extendable and adapts to specific needs. You can use
existing pre-built AWS plugins or create your own custom plugins, at any step of
the release process in AWS CodePipeline.

AWS CodePipeline features
The features of AWS CodePipeline are:

Workflow: In AWS CodePipeline, you can define your workflow and describe
how new code changes will progress. This pipeline has a series of stages that act
as logical divisions in the workflow, and each stage has a sequence of actions to
perform the task. It provides a graphical user interface to model and visualize
your workflow and to create, manage, and configure your pipeline for the release
process. You can execute your action in parallel to increase workflow speeds.
Integrations with AWS services: AWS CodePipeline can use AWS CodeCommit
or Amazon S3 to pull the source code. It can use AWS CodeBuild to run the build
and tests. It can use AWS CodeDeploy, Amazon Elastic Container Service (ECS),
AWS Elastic Beanstalk, or AWS OpsWorks for deployment. It can update or
delete the resources by providing AWS CloudFormation templates. It can use
AWS Lambda, Amazon DynamoDB, and Amazon API Gateway for a serverless
application model. You can trigger custom functions at any stage in your AWS
CodePipeline.
Pre-built and custom plugins: With AWS CodePipeline, you can integrate
developer tools or your own custom systems. Developer tools can use for version
control systems, build, test, and deployment. You can also create a custom action
and register with AWS CodePipeline. This custom action allows hooking servers
into a pipeline by integrating the AWS CodePipeline open source agent with
servers. You can register existing build servers as a custom action.

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[167]

Declarative templates: AWS CodePipeline allows you to specify a release
workflow, its stages, and actions for the pipeline structure from declarative JSON
documents. These JSON documents enable you to start templates for creating a
new pipeline, as well as to update existing pipelines.
Access control: AWS CodePipeline uses AWS IAM roles, IAM users, and
Security Assertion Markup Language (SAML) integrated directories to manage
the access control. You can give permissions for who can make the changes to
release the workflow or for who can control it.

Now let's understand how to create a pipeline from the AWS CodePipeline console.

Creating an AWS CodePipeline from the console
To create a pipeline from the console, you need to specify the source file location and
information about the providers that you will use for the actions. You must include a
Source stage with Build, or a Staging stage to create the pipeline. Through the pipeline
wizard, AWS CodePipeline creates different stage names such as source, build, staging,
which you cannot change. Later on, you can add more stages and give project specific
names. AWS CodePipeline uses Amazon CloudWatch events to detect any code changes in
your AWS CodeCommit source code repository. It means whenever any code changes
occur, AWS CloudWatch will trigger events to start the pipeline automatically.

The steps to create AWS CodePipeline are as follows:

Log in to the AWS Management Console and select the AWS CodePipeline1.
service.
It will display the Get started button for a first time user. If any pipelines have 2.
already been created, then you will see the list of pipelines. Select the Create
pipeline button to create a new pipeline.
Specify your AWS CodePipeline name in the Pipeline name text field and click3.
on the Next step button, as shown in the following screenshot:

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[168]

The pipeline name must be unique within a region in a single AWS
account.

In the Source step, select the source provider, provide the connection details for4.
that source provider, and click on the Next step button. Currently, AWS
CodePipeline supports the following three source providers:

Amazon S3: This provides the full path of the object with the
Amazon S3 bucket name and versioning enabled in the Amazon S3
Location, field such as s3://bucket_name/path/source.zip.
AWS CodeCommit: In the Repository name field, select the
repository from the drop-down list that you want to use as a source
code repository and select the name of the branch from the drop-
down list. Next, you can select the Change detection options
section if you want to start the build automatically from the
Amazon CloudWatch Events, or for AWS CodePipeline to check
changes, periodically. In this example, we have selected the AWS
CodeCommit option.

If you ask AWSCodePipeline to check changes periodically, this will
provide a slower and less configurable experience, and it is not
recommended.

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[169]

GitHub: Click on the Connect to GitHub button and log in with
your GitHub credentials. I assume you have GitHub credentials
and a source code repository. Once you successfully logged in, you
can see the repository in the drop-down list on the source page.
Select the repository that you want to use for the source location
and then select the branch from the drop-down list, as shown in the
following screenshot:

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[170]

In the Build step, select the build provider that you want to use or are already5.
using, provide the necessary information, and click on the Next step button.
Currently, AWS CodePipeline provides the following options for the build
provider:

No Build: You can skip the Build stage.
Add Jenkins: You must specify the provider name, server URL and
project name to use the Jenkins instance as the build provider.
AWS CodeBuild: For AWS CodeBuild, you can choose the Select
an existing build project or Create a new build project option. For
an existing project, you can select the project name from the drop-
down list. For a new build project, you can refer to Chapter 4,
CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing, and
create a project. We will use this option for our demo project.
Solano CI: You can select Connect to link Solano CI and AWS
CodePipeline:

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[171]

In the Deploy step, select the deployment provider to deploy your instance,6.
provide necessary information, and click on the Next step button. Currently,
AWS CodePipeline provides the following options for deployment:

No Deployment: You can skip the Deployment stage and add
later.
Amazon ECS: You can select an existing Amazon ECS cluster in
the cluster name. You can select an existing service running on that
cluster in the service name. You can also create a new cluster and
service, if you don't have any. In image filename, mention the
JSON filename that describes the Amazon ECS container service
name, image, and tag.

Make sure you have two Amazon ECS instances. One is the primary
instance and the other is to accommodate new instances.

AWS CloudFormation: In the Action mode dropdown, you can
select any of the following options:

Create or update a stack: Enter the stack name,
template filename, and IAM role name. Optionally,
you can select the configuration filename and select
IAM capabilities.
Create or replace a change set: Enter the stack name,
change set name, template filename, and IAM role
name. Optionally, you can select the configuration
filename and select IAM capabilities.

AWS CodeDeploy: You can select an existing application name
and deployment group for AWS CodeDeploy or create a new
application from the AWS CodeDeploy console.
AWS Elastic Beanstalk: You can select an existing application
name and environment name for AWS Elastic Beanstalk or create a
new application from the AWS Elastic Beanstalk console.
AWS OpsWorks: You can select a stack name and app. Optionally,
you can select the layer to which the target instance belongs:

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[172]

In the Service Role step, select the role name from the drop-down list, if you7.
have already created an IAM service role for AWS CodePipeline. If you don't
have any service role, you can create a new role by clicking on the Create role
button, which will navigate you to the IAM console to create a new role and
redirect you to the same page. You can select the newly created role and click on
the Next step button, as shown in the following screenshot:

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[173]

In the Review step, review the pipeline configuration, and then select Create8.
pipeline to create the pipeline. Select the Previous button to go back and edit the
choice. Select the Cancel button to exit the wizard. You will see the following
success message once you create it, and you can see the pipeline in the console. It
will start automatically once created:

Now, select the pipeline and click on the Release change button. It will start the
processing and show you the succeeded/failed message. If it has failed, then you
can click on the Details link to debug it and fix it. Once it has been fixed, then you
can click on the Retry to execute the same stage again. You can verify your
deployment once it is successful. You can click on the Edit button next to the
Release change button to update the existing pipeline. You can add a new Stage,
Action, or edit the existing stage or actions. In the following screens, I have added
a new Test stage and specified an approval type, Manual approval, as shown in
the following screenshot:

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[174]

It means that during the process execution, it will stop at this stage and send an
email, as configured in the SNS topic, as shown:

Once the team has tested all the test cases, then it can review and approve the Test stage.
Once that has been approved, the next stage will execute automatically.

In the next step, we will create the pipeline using AWS CLI.

Creating an AWS CodePipeline from AWS CLI
You can use AWS CLI to create an AWS CodePipeline. For that, you need to create a JSON
file with a pipeline structure and then execute the create-pipeline command with the
JSON file as the input parameter. You can execute the get-pipeline command to get the
JSON structure of the existing pipeline, and modify it to create the JSON file. If you don't
have any existing pipeline, then you can use the AWS CodePipeline wizard to create a
pipeline and use that JSON structure.

The create-pipeline command will not create an Amazon S3 bucket.

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[175]

There are two ways to create a pipeline from CLI, which are as follows:

JSON file creation
In a command prompt or terminal, run the get-pipeline command and copy the output
to the JSON file. For example, if a pipeline is called PacktPipelineDemo, then you can
type the following command:

aws codepipeline get-pipeline --name PacktPipelineDemo >mypackt.json

The output of this command is stored in the mypackt.json file. Open this file in a text
editor and change the value to reflect the structure you want. You must change the pipeline
name. Apart from that, you should consider using the same Amazon S3 bucket where
artifacts are stored, the source location, deployment provider, and other details. Once you
have modified the changes, then you must manually create the AWS CloudWatch Event
rules to detect the changes.

Execution of the create-pipeline command
Now, execute the create-pipeline command with the -cli-input-json parameter.
Here, the parameter should be the JSON file you have created. To create
the PacktPipelineSecondDemo pipeline, you must specify this name in the JSON file as
the value parameter.

You must include file:// before the JSON filename,
aws codepipeline create-pipeline --cli-input-json
file://mypackt.json

This command will return the entire pipeline structure. You can verify
your pipeline from the AWS CodePipeline console or use the get-
pipeline-state command.

We have successfully completed AWS CodeDeploy and AWS CodePipeline. Now, we will
look at AWS CodeStar.

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[176]

AWS CodeStar
AWS CodeStar provides tools to develop, build, and deploy applications quickly. It has
many project templates for developing applications on AWS Lambda, Amazon EC2, and
AWS Elastic Beanstalk, with support for many popular programming languages, including
Java, PHP, JavaScript, Python, and Ruby. AWS CodeStar provides preconfigured delivery
tools to develop, build, test, and deploy applications for faster delivery. It supports built-in
security policies for easy access of your project. It provides project dashboards to monitor
application activity centrally, and manage development tasks easily. AWS CodeStar can
integrate with Atlassian JIRA. Atlassian JIRA is a third-party project management and issue
tracking tool. From the AWS dashboard, you can create and manage JIRA issues.

Some of the AWS CodeStar features are as follows:

You can use your favorite Integrated Development Environment (IDE) such as
Visual Studio, Eclipse, or AWS CLI. After creating your project in AWS CodeStar,
you can directly use your code in AWS Cloud9, a cloud-based IDE from AWS.
AWS CodeStar uses the AWS Identity and Access Management (IAM) service
that provides built-in, role-based security policies for easy and secure access for
the team, and also manages a developer's identities. It allows you to share the
projects using different access levels, such as owners, contributors, and viewers.
AWS CodeStar uses AWS CodeCommit to securely store application code. You
can also choose to store source code in the GitHub repository in your GitHub
account.
AWS CodeStar uses AWS CodeBuild to compile and package the source code and
AWS CodePipeline for the software release process.
You can automate the deployments by integrating AWS CodeDeploy and AWS
CloudFormation with AWS CodeStar for the easy update of application code, and
deployment to Amazon EC2 and AWS Lambda.
AWS CodeStar includes a dashboard to easily track and manage end-to-end
development for your projects. From the project dashboard, you can manage
activity for a CI/CD pipeline, include wiki projects and integrate with Amazon
CloudWatch, and Atlassian JIRA software. From all these integrations, you can
centrally manage JIRA issues and monitor application activity.

Now, let's explore how to create a project in AWS CodeStar.

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[177]

Creating a project in AWS CodeStar
The steps for creating a project in AWS CodeStar are as follows:

Log in to AWS Management Console and select the AWS CodeStar service.1.
It will display the Start a project button for the first time user. If any projects2.
have already been created, then you will see the tile of projects with a dashboard,
code, and team link. Select the Create a new project button to create a new
project.
For a first time user, it will show the Create service role dialog box. You have to3.
select the Yes, create role option to create the role. It will give full access for AWS
CodeStar to create and manage resources, and grant other IAM users permission
to access these resources. It will show the project templates for starting AWS
projects. You can filter or select the following, or choose a template. Here, we
have selected the Static Website template:

Application category, such as web application, web service, Alexa
Skill, static website
Programming language, such as C#, Go, HTML5, Java, Node.js,
PHP, Python, Ruby
AWS services, such as AWS Elastic Beanstalk, Amazon EC2, AWS
Lambda:

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[178]

The following screenshot is the Project details screen. Add a value for the Project4.
name field. The Project ID field will populate automatically. You can change this
project ID by clicking on the Edit button. It will be used to name the AWS
resources included in the AWS CodeStar project. AWS CodeStar will store the
source code in AWS CodeCommit or GitHub. Provide the repository name
generated by AWS CodeCommit or GitHub. Click on the Next button:

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[179]

The following screenshot is the Review project details screen. This page will5.
display all the AWS services you need for this project with tools. The Edit
Amazon EC2 configuration option will be provided to change the Amazon EC2
configuration. Click on the Create Project button after reviewing the project
details:

Now the project has been created. It will show you the Select template screen to6.
configure user settings, such as the IAM user name, display name, and email.
Click on the Next button.
The following screenshot is the set up tools screen where you can select your7.
preferred IDEs, such as AWS Cloud9, Eclipse, Visual Studio, or AWS CLI. You
can skip this section if you don't want any IDEs:

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[180]

Once you select your preferred IDE and select next, it will redirect you to the8.
AWS CodeStar dashboard. In the dashboard, you can see the AWS CodeStar
project information with IDE. You can add an additional tile with the Add tile
dropdown. It provides options such as JIRA issue tracking, Team wiki,
Continuous deployment, Application activity, Application endpoints, AWS
Cloud9 environments, and GitHub issue tracking:

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[181]

This is the continuous screen and you can see the Team wiki tile, AWS Cloud9
environments, and Application endpoints sections:

This is the continuous screen and you can see Commit history, Application
activity, JIRA, and AWS CodePipeline details:

To verify the deployment, you can click on the Application endpoints section9.
and you will see the following screen. The application has been created and
deployed successfully:

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[182]

You can rename or delete the application from the AWS CodeStar console. When10.
you rename the application, it will open the dialog box and ask for the new or
updated name. When deleting the application, it will open the confirmation
dialog box and ask for the project ID. It will also delete the associated resource
that has been generated by AWS CodeStar:

You have completed AWS CodeStar. In the next section, we will look at AWS X-Ray.

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[183]

AWS X-Ray
AWS X-Ray is used by developers to debug and analyze the distributed, production
applications that are built using the microservice architecture. AWS X-Ray helps to identify
and troubleshoot the root cause of any performance issue, or any errors in an application.
AWS X-Ray will show a map of the application's underlying context by getting an end-to-
end view of a request that can travel through the application. AWS X-Ray can be used to
analyze applications in any kind of environment, such as development or production, from
simple applications to complex applications. This section on AWS X-Ray has been divided
into the following topics:

AWS X-Ray benefits
Key features of AWS X-Ray
An AWS X-Ray example from the console

AWS X-Ray benefits
The following are the benefits of AWS X-Ray:

AWS X-Ray supports the tracing of user requests. It provides tracing features, to
follow the request path and pinpoint the performance issue in an application.
AWS X-Ray has annotations to append metadata to the traces. It helps with
tagging and filtering trace data to discover specific patterns and diagnose issues.
AWS X-Ray helps to identify performance bottlenecks. It aggregates the data that
has been generated by the service and provides you with a view of the
applications performance.
AWS X-Ray provides the service maps that are used to see the relationships
between your services and resources, used in the application in real time. You can
easily detect high latencies occurring in the application, as well as you can
visualize the nodes, and edge latency distribution for services that will help to
drill down the service and paths that impact the application performance.
AWS X-Ray can work with Amazon EC2, Amazon Elastic Container Service
(ECS), AWS Lambda, and AWS Elastic Beanstalk. Applications that are written in
Java, Node.js, and .NET and deployed on these services can be used with AWS X-
Ray.
AWS X-Ray can work for simple as well as complex applications, in a
development or in a production environment. You can trace the requests for
multiple AWS accounts, AWS Regions, and Availability Zone (AZ) with AWS X-
Ray.

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[184]

Key features of AWS X-Ray
The following are the key features of AWS X-Ray:

AWS X-Ray is simple to set up. You can integrate X-Ray SDK with an application
and install an X-Ray agent. For AWS Elastic Beanstalk, you have to integrate the
X-Ray SDK with the application only, as the X-Ray agent is pre-installed.
With AWS X-Ray, you will get an end-to-end, cross-service view of requests that
are made to your application. It supports applications running on various AWS
services, it captures metadata for requests made to MySQL, PostgreSQL, Amazon
DynamoDB, Amazon Simple Queue Service (SQS), and Amazon SNS. It also
supports applications written in different languages such as Java, Node.js, and
.NET.
AWS X-Ray creates service maps with trace data of your application to drill
down into issues or a specific service. It also helps to visually detect nodes.
AWS X-Ray can add annotations to specific components or services in an
application. You can filter the data for traces.
AWS X-Ray can be used with the AWS Management Console, AWS SDKs, and
AWS CLI. AWS SDK provides interceptors to trace incoming requests, client
handlers to call other services, and HTTP clients to call other internal and
external web services. You can programmatically access services with AWS X-
Ray APIs to custom analytics dashboards, and easily export trace data, or ingest
data into tools.
AWS X-Ray is easily integrated with AWS IAM to control which users and
resources have permission, and how they can access traces.

Now let's look at an example of AWS X-Ray.

Creating an AWS X-Ray example from the
console
The following are the steps to create an AWS X-Ray example using AWS Management
Console:

Log in to AWS Management console and select the AWS X-Ray service.1.
It will display a getting started page for the first time user. If any projects have2.
already been added then it will navigate to the Service map tab. Select Getting
started to create a new project.

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[185]

In Step 1: Options, select to launch a sample application or instrument your3.
application. If you select the Instrument your application option, then in Step 2:
Language, you have to select your programming language, such as Node.js, Java,
C# .Net, Python, and Go. In the same flow, in Step 3: Implementation, it will
provide you with the instructions to add or modify your code for
implementation, and then run the AWS X-Ray Daemon because AWS SDK will
not send data directly to AWS X-Ray. For this example, select the Launch a
sample application (Node.js) option. It will skip Step 2: Language and forward
to Step 3: Implementation:

In the implementation step, click on the Launch sample application button:4.

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[186]

It will navigate to the AWS CloudFormation Create stack screen. In the Select5.
Template option, you can create the stack as per your needs. For that you can
design a template or choose a template. Select the Specify an Amazon S3
template URL option and click on the Next button:

A stack is a group of resources that is managed as a single unit.

It will navigate to the Specify Details page. Type the stack name and select the6.
parameters such as subnet and VPC to launch the AWS EC2 instance, and click
on the Next button:

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[187]

On the Options page, you can add the key-value pair for tags. Also, add a few7.
more things such as permissions, rollback triggers, and so on, and click the Next
button.
On the Review page, verify your information and select the checkbox to8.
acknowledge that AWS CloudFormation might create IAM resources, and click
on the Create button. It will create a stack for you.
You can select the stack name and it will show you all the events. If your stack9.
fails then you can check the events for error messages and fix. You can go to the
Outputs tab and select the URL for ElasticBeanstalkEnvironmentURL:

It will open the sample application. Click on Start/Stop a few times:10.

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[188]

Now, on the AWS X-Ray screen, the Done button will be enabled. Select that11.
button and it will navigate to the AWS X-Ray service map. You can see the
service call graph:

Click on the Traces option and you will see the overview of the traces to identify12.
the impact. It provides you with different groups through options such as URL,
StatusCode, Method, User, and so on:

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[189]

To identify the performance bottlenecks, click on the corresponding ID from the13.
trace list:

To check for any exceptions, select the group by StatusCode. It will show you the14.
success/failure StatusCode in response. Select the StatusCode for the failed
response and click on the ID in the trace list. It will navigate you to the trace
details page. You will see the error icon under status; you can click on that icon
for error details:

Once you verify, you can delete the stack from the AWS CloudFormation and it15.
will clean up the resource that has been created.

CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar Chapter 5

[190]

Summary
So far, we have looked at AWS CodeDeploy, AWS CodePipeline, AWS CodeStar, and AWS
X-Ray, which are part of the AWS Developer tools that help you implement CI/CD. In the
next chapter, we will discuss how to manage user authentication from AWS Cognito.

6
User Authentication with AWS

Cognito
In the previous chapter, we discussed the AWS Code family of tools, such as AWS
CodeDeploy, AWS CodePipeline, AWS CodeStar, and AWS X-Ray.

In this chapter, we will discuss the AWS Cognito service for simple and secure user
authentication for mobile and web applications.

Amazon Cognito is a user authentication service that enables user sign-up and sign-in, and
access control for mobile and web applications, easily, quickly, and securely. In Amazon
Cognito, you can create your user directory, which allows the application to work when the
devices are not online and to save data on the user's device and synchronize it. It gives a
consistent application experience to the user, regardless of the device.

Amazon Cognito supports, to scale, millions of users and authenticates users from social
identity providers such as Facebook, Google, Twitter, Amazon, or enterprise identity
providers, such as Microsoft Active Directory through SAML, or your own identity
provider system.

With Amazon Cognito, you can concentrate on developing great application experiences for
the user, instead of worrying about developing secure and scalable application solutions for
handling the access control permissions of users and synchronization across the devices.

User Authentication with AWS Cognito Chapter 6

[192]

In this chapter, we will cover the following topics:

Amazon Cognito benefits
Amazon Cognito features
Amazon Cognito User Pools
Getting starting with Amazon Cognito User Pools
Amazon Cognito User Pool creation from the console
Amazon Cognito example for Android with mobile SDK
Amazon Cognito Federated Identities
Creating a new Identity Pool from the console
Amazon Cognito Sync

Let's explore each topic and see how it can be used for user authentication from AWS.

Amazon Cognito benefits
Amazon Cognito is a fully managed service and it provides User Pools for a
secure user directory to scale millions of users; these User Pools are easy to set
up.
Amazon Cognito User Pools are standard-based identity providers, Amazon
Cognito supports many identity and access management standards such as
OAuth 2.0, SAML 2.0, OAuth 2.0 and OpenID Connect.
Amazon Cognito supports the encryption of data in transit or at rest, and multi-
factor authentication.
With Amazon Cognito, you can control access to the backend resource from the
application. You can control the users by defining roles and map different roles
for the application, so they can access the application resource for which they are
authorized.
Amazon Cognito can integrate easily with the sign-up and sign-in for the app
because it provides a built-in UI and configuration for different federating
identity providers. It provides the facility to customize the UI, as per company
branding, in front and center for user interactions.
Amazon Cognito is eligible for HIPAA-BAA and is compliant with PCI DSS, SOC
1-3, and ISO 27001.

User Authentication with AWS Cognito Chapter 6

[193]

Amazon Cognito features
Amazon Cognito provides the following features:

Amazon Cognito Identity
User Pools
Federated Identities

Amazon Cognito Sync
Data synchronization

Let's understand these features in detail.

Amazon Cognito User Pools
Amazon Cognito User Pools helps to create and maintain a directory for users and adds
sign-up/sign-in to mobile or web applications. Users can sign in to a User Pool through
social or SAML-based identity providers. It provides a secure, simple, low-cost option and
scales to millions of users.

Enhanced security features such as multi-factor authentication and email/phone number
verification can be implemented for your application. With AWS Lambda, you can
customize your workflows for Amazon Cognito User Pools such as adding application
specific logins for user validation and registration for fraud detection.

Getting started with Amazon Cognito User Pools
You can create Amazon Cognito User Pools through Amazon Cognito Console, AWS
Command Line Interface (CLI), or Amazon Cognito Application Programming Interface
(API). Now let's understand all these different ways of creating User Pools.

Amazon Cognito User Pool creation from the console
Please perform the following steps to create a User Pool from the console.

Log in to the AWS Management console and select the Amazon Cognito service.1.

User Authentication with AWS Cognito Chapter 6

[194]

It will show you two options, such as Manage your User Pools and Manage2.
Federated Identities, as shown:

Select Manage Your User Pools. It will take you to the Create a user pool screen.3.
You can add the Pool name and create the User Pool. You can create this user
pool in two different ways, by selecting:

Review defaults: It comes with default settings and if required, you
can customize it
Step through settings: Step by step, you can customize each setting:

User Authentication with AWS Cognito Chapter 6

[195]

When you select Review defaults, you will be taken to the review User Pool4.
configuration screen and then select Create pool.
When you will select Step through settings, you will taken to the Attributes5.
screen to customize it. Let's understand all the screens in brief:

Attributes: This gives the option for users to sign in with a username,
email address, or phone number. You can select standard attributes for
user profiles as well create custom attributes.
Policies: You can set the password strength, allow users to sign in
themselves, and stipulate days until expire for the newly created
account.
MFA and verifications: This allows you to enable Multi-Factor
Authentication, and configure require verification for emails and
phone numbers. You create a new IAM role to set permissions for
Amazon Cognito that allows you to send SMS message to users on
your behalf.
Message customizations: You can customize messages to verify an
email address by providing a verification code or link. You can
customize user invitation messages for SMS and email but you must
include the username and a temporary password. You can customize
email addresses from SES-verified identities.

User Authentication with AWS Cognito Chapter 6

[196]

Tags: You can add tags for this User Pool by providing tag keys and
their values.
Devices: This provides settings to remember a user's device. It
provides options such as Always, User Opt In, and No.
App clients: You can add app clients by giving unique IDs and an
optional secret key to access this User Pool.
Triggers: You can customize workflows and user experiences by
triggering AWS Lambda functions for different events.
Reviews: This shows you all the attributes for review.

You can edit any attribute on the Reviews screen and then click on Create pool. It6.
will create the User Pool.
After creating a new User Pool, navigate to the App clients screen. Enter the App7.
client name as CognitoDemo and click on Create app client:

Once this Client App is generated, you can click on the show details to see App8.
client secret:

User Authentication with AWS Cognito Chapter 6

[197]

Pool Id, App client id, and App client secret are required to connect any9.
application to Amazon Cognito.

In the next section, we will explore an Amazon Cognito User Pool example to sign up and
sign in the user.

Amazon Cognito example for Android with mobile SDK
In this example, we will perform some tasks such as create new user, request confirmation
code for new user through email, confirm user, user login, and so on.

Create a Cognito User Pool:

To create a User Pool with the default configuration, you have to pass parameters
to the CognitoUserPool constructor, such as application context, userPoolId,
clientId, clientSecret, and cognitoRegion (optional):

CognitoUserPool userPool = new CognitoUserPool(context, userPoolId,
clientId, clientSecret, cognitoRegion);

User Authentication with AWS Cognito Chapter 6

[198]

New user sign-up:

Please perform the following steps to sign up new users:

Collect information from users such as username, password, given name, phone
number, and email address. Now, create the CognitoUserAttributes object
and add the user value in a key-value pair to sign up for the user:

CognitoUserAttributes userAttributes = new CognitoUserAttributes();

String usernameInput = username.getText().toString();
String userpasswordInput = password.getText().toString();
userAttributes.addAttribute("Name", name.getText().toString());
userAttributes.addAttribute("Email", email.getText().toString());
userAttributes.addAttribute("Phone", phone.getText().toString());

userPool.signUpInBackground(usernameInput, userpasswordInput,
userAttributes, null, signUpHandler);

User Authentication with AWS Cognito Chapter 6

[199]

To register or sign up a new user, you have to call SignUpHandler. It contains
two methods: onSuccess and onFailure.

For onSuccess, it will call when it successfully registers a new user. The user
needs to confirm the code required to activate the account. You have to pass
parameters such as Cognito user, confirm state of the user, medium and
destination of the confirmation code, such as email or phone, and the value for
that:

SignUpHandler signUpHandler = new SignUpHandler() {
 @Override
 public void onSuccess(CognitoUser user, boolean
signUpConfirmationState, CognitoUserCodeDeliveryDetails
cognitoUserCodeDeliveryDetails) {
 // Check if the user is already confirmed
 if (signUpConfirmationState) {
 showDialogMessage("New User Sign up successful!","Your
Username is : "+usernameInput, true);
 } }

 @Override
 public void onFailure(Exception exception) {
 showDialogMessage("New User Sign up
failed.",AppHelper.formatException(exception),false);
 }
 };

You can see on the User Pool console that the user has been successfully signed
up but not confirmed yet:

User Authentication with AWS Cognito Chapter 6

[200]

Confirmation code request:

After successfully signing up, the user needs to confirm the code for sign-in. The
confirmation code will be sent to the user's email or phone. Sometimes it may
automatically confirm the user by triggering a Lambda function. If you selected
automatic verification when you created the User Pool, it will send the
confirmation code to your email or phone. You can let the user know where they
will get the confirmation code from the cognitoUserCodeDeliveryDetails
object. It will indicate where you will send the confirmation code:

VerificationHandler resendConfCodeHandler = new
VerificationHandler() {
 @Override
 public void onSuccess(CognitoUserCodeDeliveryDetails details)
{
 showDialogMessage("Confirmation code sent.","Code sent to
"+details.getDestination()+" via "+details.getDeliveryMedium()+".",
false);
 }

 @Override
 public void onFailure(Exception exception) {
 showDialogMessage("Confirmation code request has failed",
AppHelper.formatException(exception), false);
 }
 };

In this case, the user will receive an email with the confirmation code:

User Authentication with AWS Cognito Chapter 6

[201]

The user can complete the sign-up process after entering the valid confirmation
code. To confirm the user, you need to call the GenericHandler. AWS SDK uses
this GenericHandler to communicate the result of the confirmation API:

GenericHandler confHandler = new GenericHandler() {
 @Override
 public void onSuccess() {
 showDialogMessage("Success!",userName+" has been
confirmed!", true);
 }

 @Override
 public void onFailure(Exception exception) {
 showDialogMessage("Confirmation failed", exception, false);
 }
 };

User Authentication with AWS Cognito Chapter 6

[202]

Once the user confirms, it will be updated in the Amazon Cognito console:

Sign in user to the app:

You must create an authentication callback handler for the user to sign in to your
application. The following code will show you how the interaction happens from
your app and SDK:

// call Authentication Handler for User sign-in process.
 AuthenticationHandler authHandler = new AuthenticationHandler() {
 @Override
 public void onSuccess(CognitoUserSession cognitoUserSession) {
 launchUser();
 // call Authentication Handler for User sign-in process.
 AuthenticationHandler authHandler = new AuthenticationHandler() {
 @Override
 public void onSuccess(CognitoUserSession cognitoUserSession) {
 launchUser();
 }

 @Override
 public void
getAuthenticationDetails(AuthenticationContinuation continuation,
String username) {
 // Get user sign-in credential information from API.
AuthenticationDetails authDetails = new
AuthenticationDetails(username, password, null);
 // Send this user sign-in information for continuation
continuation.setAuthenticationDetails(authDetails);
 // Allow user sign-in process to continue
continuation.continueTask();
 }

 @Override
 public void getMFACode(MultiFactorAuthenticationContinuation
mfaContinuation) {
 // Get Multi-factor authentication code from user to sign-
in

User Authentication with AWS Cognito Chapter 6

[203]

 mfaContinuation.setMfaCode(mfaVerificationCode);
 // Allow user sign-in process to continue
 mfaContinuation.continueTask();
 }

 @Override
 public void onFailure(Exception e) { // User Sign-in
failed. Please check the exception
 showDialogMessage("Sign-in failed", e);
 }

 @Override
 public void authenticationChallenge(ChallengeContinuation
continuation) {
 /** You can implement Custom authentication challenge
logic
 * here. Pass the user's responses to the continuation.
 */
 }
 };

Access AWS resources from application user:

A user can access AWS resource from the application by creating an AWS Cognito
Federated Identity Pool and associating an existing User Pool with that Identity
Pool, by specifying User Pool ID and App client id. Please see the next section
(Step 5) to create the Federated Identity Pool with Cognito.

Let's continue with the same application; after the user is authenticated, add the
user's identity token to the logins map in the credential provider. The provider
name depends on the Amazon Cognito User Pool ID and it should have the
following structure:

cognito-idp.<USER_POOL_REGION>.amazonaws.com/<USER_POOL_ID>

For this example, it will be: cognito-idp.us-east-1.amazonaws.com/us-
east-1_XUGRPHAWA.

Now, in your credential provider, pass the ID token that you get after successful
authentication:

// After successful authentication get id token from
// CognitoUserSession
 String idToken = cognitoUserSession.getIdToken().getJWTToken();

 // Use an existing credential provider or create new

User Authentication with AWS Cognito Chapter 6

[204]

 CognitoCachingCredentialsProvider credentialsProvider = new
CognitoCachingCredentialsProvider(context, IDENTITY_POOL_ID,
REGION);

 // Credentials provider setup
 Map<String, String> logins = new HashMap<String, String>();
 logins.put("cognito-idp.us-east-1.amazonaws.com/us-east-1_
XUGRPHAWA", idToken);
 credentialsProvider.setLogins(logins);

You can use this credential provider to access AWS services, such as Amazon
DynamoDB, as follows:

AmazonDynamoDBClient dynamoDBClient = new
AmazonDynamoDBClient(credentialsProvider)

You have to provide the specific IAM permission to access AWS services, such as
DynamoDB. You can add this permission to the Federated Identities, as
mentioned in the following Step 6, by editing the View Policy Document. Once
you have attached the appropriate policy, for example
AmazonDynamoDBFullAccess, for this application, you can perform the
operations such as create, read, update, and delete operations in DynamoDB.

In the next section, we will look at how to create the Amazon Cognito Federated Identities.

Amazon Cognito Federated Identities
Amazon Cognito Federated Identities enables you to create unique identities for the user
and, authenticate with Federated Identity providers.

With this identity, the user will get temporary, limited-privileged AWS credentials. With
these credentials, the user can synchronize their data with Amazon Cognito Sync or
securely access other AWS services such as Amazon S3, Amazon DynamoDB, and Amazon
API Gateway.

It supports Federated Identity providers such as Twitter, Amazon, Facebook, Google,
OpenID Connect providers, or SAML identity providers, unauthenticated identities. It also
supports developer-authenticated identities from which you can register and authenticate
the users through your own backend authentication systems.

You need to create an Identity Pool to use Amazon Cognito Federated Identities in your
application. This Identity Pool is specific for your account to store user identity data.

User Authentication with AWS Cognito Chapter 6

[205]

Creating a new Identity Pool from the console
Please perform the following steps to create a new Identity Pool from the console:

Log in to the AWS Management console and select the Amazon Cognito Service.1.
It will show you two options: Manage your User Pools and Manage Federated2.
Identities.
Select Manage Federated Identities. It will navigate you to the Create new3.
identity pool screen. Enter a unique name for the Identity pool name:

You can enable unauthenticated identities by selecting Enable access to4.
unauthenticated identities from the collapsible section:

Under Authentication providers, you can allow your users to authenticate using5.
any of the authentication methods. Click on Create pool.

You must select at least one identity from Authentication providers to
create a valid Identity Pool.

User Authentication with AWS Cognito Chapter 6

[206]

Here Cognito has been selected for a valid Authentication provider by adding
User Pool ID and App client id:

User Authentication with AWS Cognito Chapter 6

[207]

It will navigate to the next screen to create a new IAM role by default, to provide6.
limited permission to end users. These permissions are for Cognito Sync and
Mobile Analytics but you can edit policy documents to add/update permissions
for more services. It will create two IAM roles. One for authenticated users that
are supported by identity providers and another for unauthenticated users,
known as guest users. Click Allow to generate the Identity Pool:

User Authentication with AWS Cognito Chapter 6

[208]

Once the Identity Pool is generated, it will navigate to the Getting started with7.
Amazon Cognito screen for that Identity Pool. Here, it will provide you with
downloadable AWS SDK for different platforms such as Android, iOS - Objective
C, iOS - Swift, JavaScript, Unity, Xamarin, and .NET. It also provides sample code
for Get AWS Credentials and Store User Data:

You have created Amazon Cognito Federated Identities. In the next section, we will look at
Amazon Cognito Sync.

Amazon Cognito Sync
Amazon Cognito Sync is an AWS Service used to synchronize the data across client devices,
platforms, and operating systems.

Amazon Cognito Sync supports cross-device sync and the offline access of a user's
application-related data. It can be used to synchronize a user's profile data as well as across
mobile and web applications, without requiring your backend system.

User Authentication with AWS Cognito Chapter 6

[209]

It contains a client library to cache data locally that is used to read and write data, without
any device connectivity status. You can synchronize the data when the device is online and
you can set push synchronization to notify other devices whenever any update is available.

It provides a client library to enable the cross-device sync of application-related data. If a
user is using your app on a phone and later on switches to a tablet or other devices, the
persisted application information is available on other devices.

The client libraries cache the user information locally which means the app can read and
write data, regardless of any device connectivity, and it will synchronize the user data when
the device comes online. You can set up the push sync, then it will notify other devices
immediately about the availability of new updates.

Amazon Cognito saves end-user data as key-value pairs in datasets. This data is associated
with Amazon Cognito Identity and it can be accessed across different devices and logins.
The synchronize method is invoked to sync the data between an end user's device and
Amazon Cognito. The maximum size of each dataset is 1 MB, and you can associate an
identity with up to 20 datasets.

As we discussed, a client of Amazon Cognito Sync creates a local cache for identity data and
the app talks to this cache, when it reads and write keys. All of your changes made on the
device are available immediately on the device, even if you are offline. When you call the
synchronize method, it will pull the changes from the service to the device and it will push
the local changes from the device to the service, so the changes are available for other
devices to synchronize.

You need to create a credential provider to initialize the Amazon Cognito Sync client. This
credential provider gets temporary AWS credentials to enable the app to access your AWS
resources.

You can use the following code to initialize the Amazon Cognito Sync client in Android.

You need to import the Amazon Cognito package:

import com.amazonaws.mobileconnectors.cognito.*;

Now, initialize the Amazon Cognito Sync Manager by providing the Android app context,
an AWS region, and an Amazon Cognito credential provider:

CognitoSyncManager client = new CognitoSyncManager
 (getApplicationContext(), Regions.YOUR_REGION, credentialsProvider);

User Authentication with AWS Cognito Chapter 6

[210]

With Amazon Cognito, your app's profile data is organized into datasets. This dataset is the
granular entity to perform the sync operation and it is a unique string. Read and write
operations on datasets will affect the local store, until the synchronize method is invoked.

The following code will create a new dataset or open an existing dataset:

Dataset dataset = client.openOrCreateDataset("my_dataset_name");

Amazon Cognito datasets function as dictionaries and are accessible through keys with
values.

Dataset values affect only the local cached copy, until you call its
synchronize method.

String value = dataset.get("myKey");
// You can call put to put the key in dataset
dataset.put("myKey", "my value");
// You can call remove to remove the key from dataset
dataset.remove("myKey");

You can call synchronize to compare Amazon Cognito Sync store data with local cache
data. Amazon Cognito Sync will pull the remote changes, conflict the resolution, if any, and
update the values on the service which are pushed from the device. You can call
synchronize dataset by calling its synchronize method:

dataset.synchronize(syncCallback);

When connectivity is available immediately, synchronizeOnConnectivity() will behave
as synchronize() and if it's not available, it will monitor for connectivity change and
perform a sync when connectivity is available.

When synchronizeOnConnectivity() calls multiple times, then only the last
synchronize request is kept and callback will fire.

This method will not perform sync and callback will not fire, if the dataset or the callback
has collected garbage.

To delete the dataset from Amazon Cognito, you first remove the dataset from local storage
and then call the synchronize() method:

dataset.delete();
dataset.synchronize(syncCallback);

User Authentication with AWS Cognito Chapter 6

[211]

Now, let's understand how to handle a callback.

You can implement the SyncCallback interface to receive a notification in the app. Your
app can make the decision to delete the local data, merge authenticated and
unauthenticated profiles, and resolve the synchronization conflicts. You can implement the
following methods:

onSuccess(): It will trigger when a dataset is downloaded successfully from the
sync store:

@Override
public void onSuccess(Dataset dataset, List<Record> newRecords) {}

onFailure(): It will call if an exception occurs during synchronization:

@Override
public void onFailure(DataStorageException dse) {}

onConflict(): It might happen that the same key has been modified in the local
store and in the sync store. This onConflict() method helps to handle this kind
of conflict situation. If you do not implement this method, then Amazon Cognito
Sync will use the most recent changes:

@Override
public boolean onConflict(Dataset dataset, final List<SyncConflict>
conflicts) {
 List<Record> resolveRecord = new ArrayList<Record>();
 for (SyncConflict conflict : conflicts) {
 // Taking remote records to resolve conflicts
 resolveRecord.add(conflict.resolveWithRemoteRecord());
 }
 dataset.resolve(resolveRecord);

 // synchronize() will retry after conflicts resolved
 return true;
}

User Authentication with AWS Cognito Chapter 6

[212]

onDatasetDeleted(): Once the dataset is deleted, it should also delete the local
dataset, and the Amazon Cognito client uses the SyncCallback interface to
confirm it. What you can do with the local data is that you can tell the client SDK
by implementing the onDatasetDeleted() method:

@Override
public boolean onDatasetDeleted(Dataset dataset, String
datasetName) {
 // Return true to delete local dataset copy
 return true;
}

onDatasetsMerged(): All the datasets are merged when two unconnected or
disconnected identities are linked together. You can notify the application to
merge by calling the onDatasetsMerged() method:

@Override
public boolean onDatasetsMerged(Dataset dataset, List<String>
datasetNames) {
 // Return false if Dataset merge outside the synchronization
callback
 return false;
}

You can use default SyncCallback for empty implementation for all, if
you don't want to implement all the callbacks.

In Amazon Cognito, the association between the device and identity can track
automatically. You can sure that every instance of the identity is notified when it identifies
any changes using push synchronization or push sync. Push sync confirms that whenever
any changes occur in sync store data for a particular identity, then it will automatically send
the silent push notification to other devices associated with that identity.

JavaScript, Xamarin, and Unity do not support Push Sync.

User Authentication with AWS Cognito Chapter 6

[213]

To enable Push Sync for your application, you need to create and configure an Amazon
SNS app for the supported platform and select the service role in the Federated Identities
page for Push Synchronization:

You can use the following keys for the push notification payload:

source: cognito-sync is the differentiating factor between notifications
identityPoolId: The Identity Pool ID, used for validation or additional
information
identityId: Identity ID within the pool
datasetName: Name of the dataset which was updated
syncCount: The sync count for the remote dataset

Summary
So far, we have looked at AWS Cognito with User Pools, Federated Identities, and Cognito
Sync.

In the next chapter, we will discuss three main architectures: EC2 instance with Load
Balancer, Docker, and Serverless, and look at the differences between them.

7
Evaluating the Best Architecture
In the previous chapter, we looked at how the AWS Cognito service provides simple and
secure user authentication for mobile and web applications.

In this chapter, we will discuss traditional web hosting, and web hosting on the cloud using
AWS, and look at the best architecture for the application. We will also look at the
comparison between EC2 instances with load balancer, Docker, and serverless architecture,
such as Amazon Lambda, and evaluate the results.

Most traditional web hosting comes in two types: dedicated and shared, and it depends on
one machine only. In dedicated web hosting, clients have to pay upfront for one or more
servers from the service provider, and they have full control of the resources. For shared
web hosting, clients have to pay for a set of shared space and resources, on a server with
other clients. This form of web hosting is popular with small and medium size businesses.

Cloud web hosting is in demand and is the most popular. It provides different kinds of
services for the customer. It is high performance, scalable, reliable, secure, and affordable; it
helps to avoid a single point of failure by spreading the resources, such as RAM, disk, and
CPU, on multiple connected servers. It utilizes the resource to its maximum extent to help
with the Return on Investment (ROI).

Currently, there are many players in the market for cloud computing, such as AWS,
Microsoft Azure, Google Cloud, and many others. But AWS has dominated the market and
it offers more and variety of services than others.

Evaluating the Best Architecture Chapter 7

[215]

Amazon Elastic Compute Cloud is a well-known AWS service that provides resizable
compute capacity to run applications on the cloud. It provides a console, AWS CLI, or AWS
SDK to create the virtual machines and easily configure their capacity. Amazon EC2 offers
different types of instances for different requirements and costs.

Docker is a container-based platform for modern applications. It is used to build, test,
deploy, and manage the applications on-premises and in the cloud, as well from
development to production. Docker is a packaged software in standardized units known as
containers. It comes in two forms: Docker Community Edition (CE) for developers to build
the applications, and Docker Enterprise Edition (EE) for multi-architecture operations. It is
reducing the infrastructure cost by 50% or more. AWS provides container-managed services
called Amazon Elastic Container Service (ECS) for Docker.

AWS Lambda is an event-driven compute service and is also known as serverless
architecture. It executes the code in response to events without provision, or manages the
servers. Your code will scale automatically when it needs to, from a few requests per day to
thousands of requests per second. It will charge when the code is running.

In this chapter, we will cover the following topics:

The comparison of traditional web hosting versus web hosting on the cloud using
AWS
The AWS Well-Architected framework
Amazon EC2 instances and Elastic Load Balancer
Docker with Amazon EC2 Container Service (Amazon ECS)
Serverless architecture with Lambda
Use cases for different architectures
Controlling and optimizing costs

Now let's start with the first topic and look at traditional and cloud web hosting.

The comparison of traditional web hosting
versus web hosting on the cloud using AWS
Now, in this section we will look at traditional web hosting and web hosting on the cloud,
using Amazon Web Services. Let's start with traditional web hosting.

Evaluating the Best Architecture Chapter 7

[216]

Traditional web hosting
Traditional web hosting is mainly shared or dedicated hosting.

In shared hosting, you are sharing the server resources with other websites. It is used by
small to medium-scale websites because of the cost-effectiveness and low maintenance.

The drawbacks of shared hosting are:

Performance: Your website will share server resources such as storage, CPU, and
bandwidth with other websites, so if other websites get more user traffic, it will
slow down your website.
Lack of control: You are not the owner of the server. You can use only the
available resources on the server and can't install any software, as per your needs.

Challenges with traditional hosting
In traditional web hosting, you need to purchase additional resources as the website traffic
grows. It is a very expensive and complex proposition to keep websites highly available and
scalable. To achieve this, you have to implement complex solutions that will ensure a high
level of availability, and also require you to implement accurate traffic forecasts to provide
a high level of customer service. Sometimes, there is low utilization of your expensive
hardware because of less traffic to your website, which means that you are maintaining idle
or underused hardware, with high operating costs.

For example, you can go for shared hosting if your website has 10,000 users. In the same
way, you can go for dedicated hosting if you have 100,000 users, and you can add more
servers as the number of users grows. You need to keep purchasing the servers as the traffic
grows. Now, the real problem starts here. The traffic decreases and the extra servers that
you have purchased aren't being used. In today's world, hardware is becoming a
commodity, but on the other hand, the value of this server deprecates more than 50% over a
year. It means that you are getting a very small, or negative Return of Investment (ROI)
on your investment of an extra server.

Evaluating the Best Architecture Chapter 7

[217]

As per the following example, a traditional web hosting application generally implements
three tiers of architecture, a Presentation layer (User Interface layer), an Application layer
(Business layer), and a Data layer (Persistence layer). This architecture also contains built-in
performance, availability, and failover features:

Evaluating the Best Architecture Chapter 7

[218]

Cloud hosting
Cloud computing provides high availability and scalability that traditional hosting can't
provide. Cloud hosting companies rent out their server space as needed and on an on-
demand basis. Instead of paying upfront for a server, you will pay for what you actually
use. Cloud hosting is more resilient and elastic. It will not affect the performance and
bandwidth of your application or website, if there is a problem with any other application
or website.

Cloud hosting scales more quickly than traditional hosting. The cloud server will scale up
and down automatically, if the traffic to the website or applications, increases or decreases.
It will also add and remove the server space automatically.

In short, cloud hosting provides you with highly available, scalable, flexible, and low-cost
hosting solutions without any maintenance.

Now, let's look at why cloud hosting is a better choice over traditional hosting:

Highly available:
Cloud hosting: It guarantees no single point of failure and
maximum network uptime. If one server fails and is unable to take
a request than another server will take over the workload of the
failed server, because all the servers are interconnected.
Traditional hosting: Due to single server setup, there are risks of
downtime and hardware failure for your application and website.

Pay as you need:
Cloud hosting: You will not invest in any of the infrastructure. You
pay for the resource or service that you actually use.
Traditional hosting: You have to pay a fixed amount for the
service, whether you use it or not. If you have set up your own
infrastructure, then it will cost more for the initial setup, as well as
for maintenance.

Security:
Cloud hosting: It will secure your data at different levels, such as
network, application, data, and physical. It will also ensure the
safety of the data through identity management, data isolation,
storage, encryption, firewalls, and backups.

Evaluating the Best Architecture Chapter 7

[219]

Traditional hosting: You share the resources with other websites
on the same server, and there is the risk that if one website has
been hacked, then it is easier to access other websites, too. You can
maintain a dedicated server to store your sensitive information but
the costs for this are very high.

Scalability:
Cloud hosting: It is simple and quick to allocate resources. You can
add/reduce or remove resources, such as RAM, CPU, memory, and
storage from the network of multiple servers.
Traditional hosting: It might have rigid specifications and limited
resource to add/reduce or remove any resources immediately.

Multi-location:
Cloud hosting: Hosting servers are present across the globe and
can be accessed from anywhere.
Traditional hosting: Servers are located at a fixed place, so you
have to select the location of the server wisely, as it plays a major
role in loading the website.

Disaster recovery and backup:
Cloud hosting: It provides a disaster recovery feature so that data
is backed up automatically to interconnected servers.
Traditional hosting: It doesn't offer disaster recovery, as it
provides a single server to host the application or website. You are
responsible for backing up the data periodically.

Integration:
Cloud hosting: You can customize or integrate applications with
the latest technologies as per your business needs. This includes the
upgrading of servers and the latest releases of software.
Traditional hosting: You cannot customize or upgrade
automatically.

Now, if you have decided to go for the cloud than you need to find a suitable architecture.
In the next section, we evaluate AWS solutions. For that, we will deploy the application on-
premises, present the AWS cloud architecture, and discuss its key components.

Evaluating the Best Architecture Chapter 7

[220]

The AWS solution for common web hosting
For your running web application, you might face some architectural and infrastructure
issues, and for that, AWS provides cost-effective and reliable solutions. The following are
some of the benefits of using AWS:

Handle peaks in cost-effective way:

In the traditional hosting model, you have to take care and handle peak capacity
by provisioning additional servers. This wastes resources during off-peak periods.

If you host the application on AWS, then it will provision the additional servers
during the peak hours, and constantly adjust the cost and capacity to meet the
actual traffic patterns.

For example, as shown in the diagram that during the peak hours from 9 A.M. to
3 P.M., it has maximum inbound traffic. So, if we consider the traditional hosting
model, it will waste the resources in the remainder of the day. In contrast, in the
AWS scenario, it will automatically scale and provision the resource, when it
needs to, during actual traffic trends. It will not waste the resources and saves
more than 50% on costs:

Evaluating the Best Architecture Chapter 7

[221]

Solution for unexpected spikes:

During unexpected traffic spikes, the traditional hosting model is unable to
respond on time. It often happens that web applications are not able to handle the
unexpected spikes and go down.

With AWS, it automatically scales on demand for the unexpected traffic spikes,
launches the server quickly and in case of normal traffic, it will take the servers
offline.

An On-Demand solution for different environments:

In traditional web hosting, you need a different environment, such as
preproduction, beta, testing, and production, to ensure the quality of the web
application. The hardware costs of these different environments are relatively
high. It might also happen that you are not using hardware to its optimum
capacity and very often the expensive hardware sits unused.

In the AWS Cloud, you can provision a different kind of environment when you
need it. It also enables you to quickly switch between different environments,
with little or no service outages and with small configuration changes.

AWS cloud architecture for web hosting:

The following figure shows a classic web application using an AWS Cloud
Computing infrastructure:

Evaluating the Best Architecture Chapter 7

[222]

The following is the list of resources used in the preceding architecture:

Elastic Load Balancing (ELB) and Application Load Balancer (ALB): To
decouple services and redundancy, these spread the load across Amazon EC2
Auto Scaling groups and multiple Availability Zones.
Amazon S3 for Static Storage: Enables you to store simple HTTP-based objects
for backups and static content, such as executable scripts, images, videos.
Amazon RDS to Manage Database (DB): Creates highly available, multi-AZ DB
architecture.
Amazon ElastiCache for Caching: Provides a caching service to remove load
from applications and databases with Memcached or Redis. It will lower the
latency for frequent requests.

Evaluating the Best Architecture Chapter 7

[223]

Amazon Route53 for DNS Services: Simplifies domain management.
Amazon CloudFront for Edge Caching: Caches the content to decrease the
latency for customers.
Amazon CloudFront with AWS WAF for Edge Security: Filters malicious traffic,
such as XSS and SQL injection, to provide edge security through customer-
defined rules.
Security Groups with Firewall: Web and application servers will get the host-
level firewall for the instance.
AWS Shield for DDoS Protection: Your infrastructure safeguards automatically
against the DDoS attacks.

If we consider different kinds of architecture such as traditional hosting on the cloud,
Docker, and serverless architecture, then it can be split in the following ways:

Now, let's look at the AWS Well-Architected framework, provided by AWS.

Evaluating the Best Architecture Chapter 7

[224]

AWS Well-Architected framework
The AWS Well-Architected framework provides best practices that you will learn and
implement to design a secure, cost-effective, and reliable application.

This framework is divided into five pillars, as follows:

Operational excellence:
To deliver business values, systems should be able to run and
monitor
The supporting process and procedures improve continually

Security:
Provides risk assessments and mitigation strategies while
delivering business values to protect systems, information, data,
and assets

Reliability:
The system should be capable of recovering from
service/infrastructure disruptions, by acquiring resources
dynamically to meet demand, and from transient network issues,
or mitigating disruptions such as mis-configurations

Performance efficiency:
To meet system requirements, it should use computing resources
efficiently
It should also maintain the same efficiency whenever there are
changes to demand and changes to technologies

Cost optimization:
It should be able to eliminate suboptimal resources or avoid
unneeded costs

The following are some of the general design principles which have been identified by the
AWS Well-Architected framework, to facilitate good design in the cloud:

You can eliminate the guessing capacity for your infrastructure needs, as it will
automatically scale up and down, as per your requirements.
You can create a production-like test environment to test your systems and, once
you have completed the testing, you can decommission the resources. You will
pay only when your test environment is running.

Evaluating the Best Architecture Chapter 7

[225]

You can automate the experiment for any architecture change easily, by creating
or replicating the system at low cost.
With traditional architecture, it is difficult to change the architecture continually
and take advantage of the latest technology. In the cloud, you can automate and
test the new technology on demand, which allows you to evolve over time with
innovations, and take advantage of it, as a standard practice for your business.
You can collect the data on the cloud and see how the different architectural
choices affect the behavior of the workloads; this will help you in making fact-
based decisions.
You can schedule such a process regularly, in order to simulate some events in a
production environment. This helps to improve the organizational experience of
dealing with that sort of event.

All five pillars contain design principles, definitions, best practices, and key AWS services.
We will not go into much detail about those; instead we will look at the real-time use cases
with their challenges and see how AWS solves the problems.

Now, let's briefly look at the EC2 instance with Elastic Load Balancer, Docker, and AWS
Lambda, with its benefits and drawbacks.

Amazon EC2 instance and Elastic Load
Balancer
Amazon Elastic Compute Cloud (Amazon EC2) is a web service that provides a virtual
server on the cloud. It eliminates your costs in investing in hardware up front and gives you
the facility to develop and deploy your application faster. You can launch as many or as few
Amazon EC2 instances as per your business requirements, configure security and
networking, and manage the storage. It will boot new server instances in minutes and allow
you to quickly scale your capacity up or down, as the requirements change or if there are
unexpected spikes.

For Amazon EC2 instances, you will pay for the capacity that you actually use. It provides
tools to build applications that are failure resilient, and isolates the developers from
common failure scenarios.

Evaluating the Best Architecture Chapter 7

[226]

Amazon EC2 common terms are as follows:

Instances: Virtual compute environments
Instance types: Different configurations such as CPU, storage, memory, and
networking capacity for instances
Amazon Machine Images (AMIs): Preconfigured templates for instances
Key-Value Pairs: Secure login information for instances
Instance store volumes: To store temporary data, it will be deleted when you
stop or terminate instances
Amazon EBS volumes: Persistent storage volumes for data using Amazon Elastic
Block Store (Amazon EBS)
Security groups: A firewall that enables you to specify the protocols, ports, and
source IP ranges that can reach instances
Elastic IP addresses: Static IPv4 addresses for dynamic cloud computing
Tags: Metadata that you can create and assign to Amazon EC2 resources

EC2 purchasing options are as follows:

On-Demand Instances: Low cost, flexible without any upfront cost, long-term
commitment, and unpredictable workload cannot interrupt the application.
Reserved Instances: Provides capacity reservation, offers discount on instances
for one year or three year terms, steady or predictable usage applications.
Spot Instances: Spot instances enables bid. You can use spot instances when you
have applications with flexible start and end times. You need large additional
capacity on an urgent basis. Useful for saving costs up to 90% than on-demand
instance.
Dedicated Hosts: Physical and dedicated EC2 servers. Used for existing server-
bound software licenses and regulatory requirements.

Evaluating the Best Architecture Chapter 7

[227]

Amazon EC2 provides 32 instance types with five categories for different use cases. These
instance types are combinations of CPU, memory storage, network capacity, and graphic
hardware, to provide you with more flexibility for your applications. Each instance type
has one or more instance size to allow you to scale the resources:

General Purpose

Instance
Family Features Use Case

T2

• Balance of memory, compute, and network
resource
• Governed by CPU credit, burstable - CPU,
consistent performance

• Website and web applications
• Development, test, and staging
environments
• Microservice and code repo

M5

• Powered by light-weight Nitro system
• New larger instance size
• Higher EBS performance on smaller
instance sizes

• Small and mid-size databases
• Data processing tasks that require
additional memory
• Running backend servers for
enterprise applications

M4
• Support for enhanced networking
• By default, EBS-optimized without
additional cost

• Same as use case for the M5 instance

Compute Optimized

Instance
Family Features Use Case

C5

• By default, EBS-optimized
• Runs each core using Intel Turbo Boost
Technology
• New larger instance size

• High-performance web servers and
computing
• Machine/deep learning inference
• Highly-scalable multiplayer gaming

C4

• By default, EBS-optimized without
additional cost
• Higher networking performance
• Requires Amazon VPC, Amazon EBS
and 64-bit HVM AMIs

• High-performance, frontend fleets, web
servers
• Batch processing, distributed analytics
• High performance science and
engineering applications

Memory Optimized

Instance
Family Features Use Case

Evaluating the Best Architecture Chapter 7

[228]

X1E

• High frequency processors
• Up to 3,904 GiB of DRAM-based
instance memory
• Ability to control processor C-state
and P-state configurations

• High-performance databases and memory-
intensive applications
• Certified by SAP to run next-generation
Business Suite
• Data Mart Solutions on HANA

X1

• One of the lowest prices
• Ability to control processor C-state
and P-state configuration
• By default, SSD storage, and EBS-
optimized without additional cost

• In-memory databases
• Big data processing engines
• High-performance computing (HPC)

R4
• High frequency processors
• DDR4 Memory
• Enhanced networking support

• High-performance databases, data mining,
analysis
• Applications performing real-time
processing of unstructured data

Accelerate Computing

Instance
Family Features Use Case

P3

• High-frequency Intel processors
• Provides enhanced networking within a
Placement Group
• Supports NVLink for peer-to-peer GPU
communication

• Machine/deep learning
• High-performance computing
• Speech recognition, autonomous
vehicles, drug discovery

P2

• High-frequency Intel processors
• Provides enhanced networking within a
Placement Group
• Supports GPUDirect™ for peer-to-peer
GPU communications

• Machine learning and high-
performance databases
• Computational fluid dynamics and
finance
• Seismic analysis, molecular modeling
and genomics

G3

• Enables NVIDIA GRID Virtual
Workstation features
• Each GPU features an on-board hardware
video encoder
• Enabling low-latency frame capture,
encoding, and high-quality interactive
streaming experiences

• 3D visualizations and rendering
• Graphics-intensive remote workstation
• Application streaming and video
encoding

Evaluating the Best Architecture Chapter 7

[229]

F1
• High-frequency processors
• NVMe SSD Storage
• Support for enhanced networking

• Genomics research and financial
analytics
• Real-time video processing
• Big data search and analysis, and
security

Storage Optimized

Instance
Family Features Use Case

H1
• Up to 16 TB of HDD storage
• High disk throughput
• ENA enabled enhanced networking

• MapReduce-based workloads, distributed
file systems
• Network file system and big data workload
clusters
• Log or data processing applications

I3

• High-frequency processors
• High random I/O performance and
high sequential read throughput
• Supports Bare Metal instance type

• NoSQL and in-memory databases
• Scale-out transactional databases
• Data warehousing, Elasticsearch and
analytics workloads

D2

• HDD storage and high disk throughput
• Consistent high performance at launch
time
• Support for enhanced networking

• Massively Parallel Processing (MPP) data
warehousing
• MapReduce and Hadoop distributed
computing
• Distributed file and network file systems

Evaluating the Best Architecture Chapter 7

[230]

The following is the architecture for any simple application, where the applications are
running on Amazon EC2 instances. In the next section,we will look at the architecture for
Amazon ECS and AWS Lambda:

Benefits and drawbacks of Amazon EC2
The following are the benefits and drawbacks of Amazon EC2:

Benefits:

You can provision new servers instantly
Provides variety of instance types and is ready to launch any OS or software
without setup
You can run servers in multiple regions from a standard EC2 console

Evaluating the Best Architecture Chapter 7

[231]

Provides programmatic and API access
It provides high availability and capacity planning in multiple availability zones,
in each region
You can bid for spot instances at a cheap price for cost savings on scalable
workloads
Long-term pricing is available at discounted rates
ELB makes load balancing easy to set up

Drawbacks:

All servers are virtual and large instance types with better provision might
encounter performance issues, compared to a dedicated server
Expensive at On-Demand rates
Cross-region communication is not available
VPN access is not available if connected to an internal network
Networking is not flexible

Now let's understand the Elastic Load Balancing that is used to distribute the load on an
EC2 instance.

Elastic Load Balancing
Elastic Load Balancing (ELB) is a service from AWS to balance the load automatically. It
will help distribute incoming traffic, and scales the resources automatically, to meet
demand. Users enable it within a single or multiple-availability zones to maintain
application performance.

ELB offers features including:

Automatically detecting the unhealthy Amazon EC2 instances
Spreading incoming traffic to healthy channels
Secure Sockets Layer (SSL) certificates are centrally managed
Public key authentication
Supports for IPv4 and IPv6

Evaluating the Best Architecture Chapter 7

[232]

Elastic Load Balancer supports the following three types of load balancers:

Application Load Balancers: Best suited for HTTP and HTTPS traffic and
advanced request routing
Network Load Balancers: Best suited for TCP traffic and to get extreme
performance
Classic Load Balancers: Connection and request level, load balancing across
multiple Amazon EC2 instances

It contains the following benefits:

Highly Available: Incoming traffic will be distributed between multiple targets
such as Amazon EC2 instances, IP address, containers; it must be received from
healthy targets
Elastic: It is capable of handling any quick changes in network traffic. It provides
deep integration with Auto Scaling
Secure: It provides security features such as integration with certificate
management and SSL decryption
Flexible: It allows an IP address to route the incoming request to application
targets
Monitoring and auditing: The Elastic Load balancer provides real-time
monitoring of the application and its performance, with Amazon CloudWatch
metrics, request tracing, and logging
Hybrid Load Balancing: The Elastic Load balancer offers to load balance across
on-premises resources and AWS resources using the same load balancer

Now, let's look at Docker and Docker on AWS, using the Amazon EC2 Container Service.

Docker with the Amazon EC2 Container
Service (Amazon ECS)
Docker is a technology to build, run, test, and deploy distributed applications, easily and
quickly on Linux-based containers. In Docker, your application will be packaged with all of
its dependencies, into a standardized unit. This standardized unit is known as a container.
This container includes system tools, libraries, and code to run the applications. You can
scale and deploy applications in any environment and know that your code will run.

Evaluating the Best Architecture Chapter 7

[233]

It helps users by providing highly reliable and low-cost ways to build, run, test, and deploy
the distributed applications, at any scale, by running Docker on AWS. Docker comes in two
licensing models: subscription-based Docker Enterprise Edition (EE), open source Docker
Community Edition (CE), and AWS supports both these models.

It provides a few benefits such as:

Docker users ship software 13 times more frequently than non-Docker users
because developers will ship only isolated services as needed
It improves productivity by reducing the time to set up new environments or
troubleshoot between different environments
Docker-based applications move seamlessly from local machines to production
environments on AWS
You can easily deploy small containerized applications or identify issues, if any,
or roll back the deployments, if necessary
Docker contains built-in security capabilities and out-of-the box configurations to
provide safer delivery across the application life cycle.
Docker helps to streamline operations and optimizes the infrastructure resources
to save more than 50% in total costs

Use case of Docker
You can use Docker where you need Continuous Integration, and accelerate
application delivery by standardizing the environments and removing the
conflicts between different language stacks and versions.
Docker will use big data processing as a service. It will package the data into
containers to be executed by non-technical users.
You can use Containers-as-a-Service to build, run, and managed the distributed
applications and the content and infrastructure.

We will look at Containers in the next section.

Evaluating the Best Architecture Chapter 7

[234]

Containers
A container is a standalone, lightweight and executable package that is a piece of software;
it includes everything required to run it such as runtime, code, system libraries, and system
tools.

It is available for Linux and Windows-based applications, and is containerized software that
will always run the same way, in any of the environments. It will isolate the software from
the surroundings.

Containers and virtual machines have the same benefits for resource isolation and
allocation; both function differently, as Containers virtualize the operating system and not
the hardware. Containers are more efficient and portable, compared to virtual machines.

In the next section, we will look at the Amazon EC2 Container Service.

Amazon ECS
Amazon ECS is a container-managed service to run, stop, and manage Docker containers,
quickly and easily on a cluster. It is highly scalable and you can host clusters on serverless
infrastructure. You can also use Amazon EC2 to host your task to gain more control, and
manage by using Amazon EC2 launch types, such as the Fargate launch type and the EC2
launch type.

With Amazon ECS, by using simple API calls you can launch and stop the container-based
applications. You can also get the cluster state from a centralized service and give access to
other Amazon EC2 features.

EC2 is a remote virtual machine where as ECS is a logical grouping of EC2 instances. If you
launch an ECS instance without adding an EC2 instance, then it doesn't make any sense.
ECS is a cluster of EC2 instances and it uses Docker to instantiate containers on these EC2
hosts.

With Amazon ECS, you will get a consistent deployment and build experience. It is also
used to Extract-Transform-Load (ETL) the workloads, and to manage and scale the batch.
We will discuss this more in Chapter 9, Amazon EC2 Container Service.

Evaluating the Best Architecture Chapter 7

[235]

In the following figure, we can see how the different services run in containers on ECS
instances:

The Amazon ECS benefits are:

Easy to use.
Amazon ECS and Docker CLI are tightly integrated to simplify development and
production workflow.
With the Amazon EC2 container service, you can launch your own container and
not share the resource with other customers. It has great level of isolation and
will provide you with a highly reliable and secure application. It is highly secure
as permissions and the users' access can be controlled using AWS IAM.

Evaluating the Best Architecture Chapter 7

[236]

No upfront fees or commitments. You pay only for the amount of data you store
in your repositories, and data transferred to the internet.
Easy to manage the cluster without the need to scale or install any software. You
have full control, and visibility for the cluster and can easily integrate it with any
of your applications or schedulers.
You can connect easily with an existing application.
You can easily integrate with other AWS services such as IAM, CloudTrail, AWS
Virtual Private Cloud (VPC), Elastic Load Balancer, to offer a containerized
services or applications-based solution.
With Amazon ECS, you can launch multiple containers without any complexity
in much less time.
AWS ECS removes the complexity for container management and you just need
to launch the cluster of container instances.
In ECS, you can create task definitions by defining the tasks using a declarative
template. In this file, you can define CPU requirements, the Docker repository,
and memory and shared data volumes. It will also control the application
version.
ECS offers a set of simple APIs for the integration or extension of services to
create, as well as delete, the clusters. You can register/deregister tasks and
launch/terminate containers.
The Amazon ECS service scheduler will add or remove the container from ELB
automatically.
Amazon ECS provides capabilities to monitor containers and clusters. You can
set the AWS CloudWatch alarms.

Amazon ECS drawbacks:

Lack of insight about registry use
It is quite difficult to work with a Docker client because it requires you to create a
temporary token
It is expensive, if the container is not deployed on AWS

Now, let's look at the serverless architecture with AWS Lambda.

Evaluating the Best Architecture Chapter 7

[237]

Serverless architecture with Lambda
AWS Lambda is a compute service. It is called a serverless architecture because you will
not provision or manage any servers. Your code will execute whenever you need it. It will
scale automatically to 1,000 requests per second.

You will pay for the compute time that you consume to run the code; there is no extra
charge when the code is idle. You can virtually run the code for any type of application and
backend service, with zero administration.

AWS Lambda provides high-availability compute infrastructure to perform the
administration of resources. This includes operating systems and server maintenance,
automatic scaling, capacity provisioning, code monitoring, and logging.

You need to write your code in an AWS Lambda supported language; currently AWS
Lambda supports Java, Node.js, C#, Go, and Python.

AWS Lambda is also known as event-driven architecture. It will execute the code in
response to any events, such as if file is uploaded or downloaded into an Amazon S3
bucket, or data is added or removed from an Amazon DynamoDB table. Amazon API
Gateway is used to run your code in response to an HTTP request. AWS SDKs are also used
to invoke the code by using API calls.

Serverless applications can be built using the Lambda functions, by triggering events and
deploying them automatically through AWS CodeBuild and AWS CodePipeline.

AWS Lambda console, AWS CLI, and AWS Serverless Application Model (SAM) are used
to create and test the AWS Lambda-based applications.

Event-based, server-side logic that runs on stateless compute containers which will
ephermal and managed by a third party, is known as serverless. It is also known as
Function-as-a-Service (FaaS) and AWS Lambda is a popular implementation of this.

Evaluating the Best Architecture Chapter 7

[238]

In the following architecture, we can see how the different functions run on AWS Lambda:

Now, we will look at the benefits and drawbacks of AWS Lambda.

Serverless benefits using AWS Lambda:

There is a clear separation between the infrastructure services and applications
that are running on top of the platform.
FaaS provides an automatic scaling functionality to reduce operational
management overheads and compute cost.
Lower operational and development costs.
It doesn't need to implement any code for scaling, and administrators do not
need to add or upgrade any servers.

Evaluating the Best Architecture Chapter 7

[239]

Technical resources can innovate at a rapid pace.
It will aid quicker software release and reduce the time to market.
You will pay for the bills when the AWS Lambda function is called.
Developers can work in an Agile way and focus on the development of the
product for faster delivery.
Fits with microservices so it can be implemented as a function.
Reduces software complexity.
Simply package and easily deploy without any system administration.
No need to worry about infrastructure security.
AWS Lambda functions are stateless.
AWS Lambda will scale automatically for instances and spin them up. If there are
massive changes in scale, you need to inform AWS.
Your risk is reduced by not relying on a single machine to serve your app and
execute the code. AWS Lambda automatically swaps it out, if one machine goes
down.

Serverless drawbacks using AWS Lambda:

FaaS adds some latency so is not the best solution for high-performance
applications.
AWS Lambda functions are time boxed and it has a default timeout of three
seconds and is configurable up to 300 secs or 5 min. So, you will spend more time
orchestrating and organizing the functions. Tasks with large amount of data will
exceed the runtime limits.
In traditional applications, it can be handled by launching another microservice,
or by calling a custom tool. AWS Lambda doesn't provide these options.
AWS Lambda functions are stateless, so don't store data locally. It might be a
limitation for the Lambda function.
You don't have control of your system and it is completely dependent on a third-
party. It is difficult to change the platform or provider without making any
changes to your applications. It also depends on the platform availability, its API,
and costs to change.
Giving up system control when implementing APIs leads to system downtime,
loss of functionality, forced API upgrades, cost changes and unexpected limits.
Serverless is not suitable for long-running applications.

Evaluating the Best Architecture Chapter 7

[240]

Service providers run the software for different customers on the same physical
server to utilize the resources more efficiently. It might create security issues, if
the customer's platform or code has any potential bugs and it affects your data. It
also affects the availability and performance of your application.
In serverless platforms, AWS Lambda needs to initialize the resources (to start
containers or spin up instances) to handle the first request for the function. This
problem is known as cold function or cold start. You can keep your function in an
active state by sending requests periodically.

Now, let's look at a few use cases with different architectures.

Use cases for different architectures
Use cases for Amazon EC2 service:

Use case 1

Challenges:
• Service administration
• Contact the service provider to ramp up more servers
• Minimum usage commitments with existing service provider
Reasons to choose Amazon Web Services:
• It can automatically distribute incoming traffic between Amazon Elastic Compute Cloud (EC2)
instances
• No need to contact service provider if need to scale up or down additional servers
• Use Amazon CloudWatch to monitor the resources and easily supervise Amazon EC2 instances from
AWS Management Console, AWS CLI, or AWS SDK
Benefits:
• Save the expense of one or more operation position
• Flexible and responsive to prepare for more growth

Use case 2

Evaluating the Best Architecture Chapter 7

[241]

Challenges:
• Control costs and an infrastructure that allows you to start from small and scale as needed
• More cost-effective than an on-premises hosted solution
• Service availability issue because of Distributed Denial-of-Service (DDoS) attacks
Reasons to choose Amazon Web Services:
• Availability, security, cost-effectiveness, and disaster recovery
• Resilient against DDoS attacks and increased performance
• Integrate Amazon CloudFront with AWS Web Application Firewall (WAF) to detect and filter
malicious web requests
Benefits:
• Improves significant defense against DDoS attacks
• Increases availability of service using AWS Firewall Protection
• Scales out IT infrastructure cost-effectively in multiple regions
• Using AWS service it reduced 70% management time

Use case 3

Challenges:
• As per the business requirements, demand will grow quickly and it will spike during some events
• Purchasing resources to support these spikes will be a sizable cost burden for business
• Dedicated technical engineer to maintain all the resources
• Resources are unused or underused during non-peak hours
Reason to choose Amazon Web Services:
• Amazon EC2 instance runs the commerce suite to enable customers to use the application
• Amazon CloudFront distributes content to users with high-speed data transfer and low latency to
improve the performance
• Amazon Elastic Block Store (Amazon EBS) to store web server logs
Benefits:
• Developers are able to create and update instances on the fly to innovate quickly for new software
• Automates the business by scaling the infrastructure process to support peak time
• Supports the spikes five times more than normal, without reduction in availability or performance and
manual intervention
• Achieved 99.999% AWS infrastructure availability with 1.5 seconds of an average page loading time

Evaluating the Best Architecture Chapter 7

[242]

Use cases for Amazon ECS service:

Use case 1

Challenges:
• To implement microservices on Docker containers
• Developers are using Docker and Docker Compose in the local environment but few developers are
experienced to deploy the Docker Containers in the production environment
Reasons to choose Amazon Web Services:
• Amazon EC2 Container Service (Amazon ECS) is a highly scalable container-managed service; it
provides container orchestration and cluster management
• Enables developers to build and deploy Docker Compose applications on Amazon ECS
Benefits:
• Amazon EC2 Container Service (Amazon ECS) eliminates installing and maintaining cluster and
container-managed software
• It is really very fast to implement
• Environment will be consistent by using Docker with Amazon ECS
• Amazon ECS provides 99.9% service availability

Use case 2

Evaluating the Best Architecture Chapter 7

[243]

Challenges:
• Company was running every application on instance only; it was manually required to run the startup
scripts and installations
• Instances were out of sync because of different configuration settings
• Company moved to Docker because of better configuration management and applications are defined
with Docker Compose for consistency
• Want to move to the production environment with new Docker-based architecture but it needs to
manage and schedule containers at scale
Reasons to choose Amazon Web Services:
• Amazon EC2 Container Service (Amazon ECS) provides cluster management and container
orchestration as a service
• Different services are deployed on Amazon ECS clusters such as API, Applications, CDNs
• Each service has a task definition that indicates the version of the container to run, cluster to choose,
and how many containers can deploy
• It is using Elastic Load Balancing and Amazon Route53 to discover the service; ELB registers each
service and Amazon Route 53 points for local entry to each ELB
Benefits:
• Amazon ECS helps to manage the placement of containers across multiple Availability Zones on
different Amazon EC2 instances to provide high availability
• It is easy to run new services by adding Docker files and create task definitions and associate with a
cluster
• Amazon ECS also manages the complexity of launching new containers and monitors that it should
continually run. The developer will concentrate on deployment without worrying about the application
availability or deployment downtimes.

Evaluating the Best Architecture Chapter 7

[244]

Use cases for Amazon Lambda:

Use case

Challenges:
• Company was using Amazon EC2 for their business logic and configurations for real-time bids on video
ads across multiple exchanges; Amazon EC2 also used for transcoding the video ads in real-time
• It was difficult for the developers to manage the cluster of EC2 instances despite using AWS Elastic
Beanstalk to manage, provision, and scale EC2 instances; developers need to manage the elements such as
selection of instance types, its scaling, deployment logic, and software configuration
• To quickly scale the business, developers need to focus on tasks without worrying about the IT
infrastructure
Reasons to choose Amazon Web Services:
• Company has implemented their business logic using AWS Lambda for real-time ad bidding; Amazon
API Gateway is used from the video player to trigger the Lambda function
• AWS Lambda used in real-time to transcode video ads
Benefits:
• With AWS Lambda, developers focus on their tasks without worrying about the IT infrastructure
• Code written is never changed, so no need to rewrite the code again if the system changes; it leads to
productivity gains
• Company usually allocates two-three technical resources which usually takes 8–10 resources because of
code reusability

In the next section, we will discuss how to control and optimize the infrastructure cost.

Controlling and optimizing costs
For cost optimization, you have to select the appropriate purchasing instance option, and
the right instance type for your application workload. As we have discussed in detail about
different instance types, you can select the right one to optimize performance.

Once you finalize the instance type, then you have the option to purchase a reserved
instance. This is an upfront commitment but reduces costs drastically.

Reserved instances are offered for 1 year or 3 year commitments. If your requirements
change before this time period, then you can use the EC2 Container Service to increase
instance usage or sell your reserved instance into the AWS marketplace.

Evaluating the Best Architecture Chapter 7

[245]

You can also use Auto Scaling to reduce the cost. Let's say your workload runs during
business hours, then you can configure Auto Scale to launch new and appropriate instances
for that known predictable load, and reduce the instance by Auto Scaling after office hours.

You can use spot instances. Spot instances are available at a discounted rate compared to
on-demand pricing. Generally, you can use this spot instance to complete Amazon EMR
Hadoop jobs.

As we know, Amazon ECS provides platforms for EC2 instances where you host your
Docker containers. From a cost-optimization perspective, you can use Amazon ECS with
under-utilized Reserved Instance. In Amazon ECS, you can place the containers on
instances, as per your schedule.

AWS Lambda is known as server-less computing, so you will eliminate the need for
running instances and administrative overhead of operating systems.

It is appropriate for the workloads that respond to events. In this case, no design decision
needs to be permanent; you can assess new products and services that are the best fit for
your requirements.

So, for very light workloads, AWS Lambda is less expensive compared to Amazon EC2.

You can consider the following points to estimate the cost of your Amazon EC2 instance:

The resource will charge when it runs
Consider the machine configuration that you select for Amazon EC2 instances,
such as AWS region, operating system, memory, number of cores, and so on
You can select the best suited instance purchase type such as On-Demand
instances, reserved instances, spot instances, or dedicated hosts
Consider the number of instances that will handle the peak loads
Use Elastic Load Balancer to distribute the traffic between Amazon EC2 instances
You can monitor the Amazon EC2 instance using Amazon CloudWatch
Use Auto Scaling to automatically scale AWS EC2 instances as per the defined
conditions

The following are some tips to optimize the architecture:

You can choose reserved instances for cost optimizations
Remove unused resources
Downgrade the under-utilized resources
Stop the resources while they are idle or not in use

Evaluating the Best Architecture Chapter 7

[246]

You can use Amazon-provided tools for cost optimization such as EC2 Right Sizing solution
and AWS Trusted Advisor. This utility can run any time for maximum upto last two weeks.
EC2 Right Sizing solution will analyze all EC2 instances for maximum CPU utilization
lower than 50%, and help to find the cost-effective instance type. AWS Trusted Advisor will
alert you for low utilization thresholds. Both tools will help to lower the cost.

Summary
So far, we have looked at the three main architectures, such as EC2 instance with load
balancer, Docker, and serverless architecture, and reviewed the benefits, drawbacks, and
use cases related to them.

In the next chapter, we will look into traditional web hosting with Amazon EC2 with Elastic
Load Balancing.

8
Traditional Web Hosting –

Amazon EC2 and Elastic Load
Balancing

In the previous chapter, we discussed traditional web hosting, web hosting in the cloud
using AWS, and the architecture for the application. We also saw a comparison between
EC2 instances with a load balancer, Docker, and serverless architecture such as Amazon
Lambda, as well as use cases for these architectures.

In this chapter, we will discuss Amazon EC2 best practices and troubleshooting. Also, we
will cover the advanced topics of Elastic Load Balancing (ELB), auto scaling, and fault
tolerance. We will monitor and optimize the infrastructure cost. Lastly, we will deploy a
practical real-world example of a CI/CD application with EC2 instances and a load balancer.

In this chapter, we will cover the following topics:

Amazon EC2 best practices and troubleshooting
Elastic Load Balancing, auto scaling, and fault tolerance
Monitoring and optimizing the cost of the infrastructure
Continuous Integration (CI) and Continuous Deployment (CD) workflow

Now, let's start with the first topic and understand best practices and troubleshooting for
Amazon EC2.

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[248]

Amazon EC2 best practices
Here are some of the best practices to get the maximum benefit from your Amazon EC2
instance:

You can use approved AMIs and not the blacklisted AMIs to launch AWS EC2
instances.
You can create an Amazon Machine Image (AMI) from an existing instance and
save the configuration as a template. You can use this template to launch
instances in the future. This instance should be encrypted to meet compliance
and security requirements.
Make sure that you are using custom resource tags with proper naming
conventions to track AWS resources.
Optimize cost by removing any unassociated Elastic IP addresses and unused
Amazon Machine Images.
Take frequent backups of EBS volumes using Amazon EBS Snapshots.
For high availability and to handle failover, you can launch your Amazon EC2
instance inside an Auto Scaling Group.
You can also attach an Elastic IP address or network interface to handle the
failover.
Make sure that you will not reach the limit set by AWS for Amazon EC2
instances. You can request prior if you want to update the limit.
Your security group doesn't allow all public traffic. It should be granular, and
have less permissive rules defined.
You should understand the involvement of the root device for backups, recovery,
and data persistence.
Make sure that on your Amazon EC2 instances you are secure by updating and
patching the applications and operating systems.
Ensure that your Amazon EC2 instance is distributed evenly across multiple
Availability Zones in a region.
Make sure that the IAM Roles and User instance profiles have been granted
appropriate permissions to manage AWS resources and APIs for Amazon EC2
instances.
You can monitor your Amazon EC2 instancer closely by enabling its detailed
monitoring.

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[249]

Make sure that there are no idle or underutilized Amazon EC2 instances. You can
stop or terminate these instances for cost optimizations. You can also identify
overutilized Amazon EC2 instances and upgrade them for faster response times.
You should store temporary data on your instance store. This data will be deleted
when you stop or terminate the instance.
You should use different EBS volumes for operating systems and your data.
Make sure that data will be persisted after instance termination on your volume.
When you restart the instance, your application should handle dynamic IP
addressing.

Troubleshooting instances
Following are some of the troubleshoot problems that might happen with your instance.

Instance terminates immediately
It is always a best practice to check the status after you launch an instance; it should be in
the running state after the pending state, and not in the terminated state. Here are possible
reasons to terminate the instance immediately after launch:

Your EBS volume limit was reached. This is a soft limit and you can increase it by
submitting a request to AWS Support.
A corrupted EBS snapshot.
You launch the instance from the instance store-backed AMI, and that AMI is
missing a required part of the file, such as image.part.xx.

Instance termination reasons:

From the Amazon EC2 console, AWS CLI, or API, you can get the reason for instance
termination.

For that, log on to the Amazon EC2 console, navigate to Instances, and select your instance.
Under the Description tab, check State transition reason and State transition reason
message. Or, you can execute this command on AWS CLI: awsec2 describe-instances
--instance-id instance_id. Here you have to replace instance_id with your
instance ID. This will return a JSON response. Check the code and message under the
StateReason tag.

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[250]

Errors when connected to an instance
Here is a possible error message when you try to connect to the instance:

Connection timed out:

If you get an error message such as Network error: Connection timed out or Error
connecting to [instance], reason: -> Connection timed out: connect while connecting to
your instance, try the following:

Check the security group rule to allow traffic from public IP addresses on the
proper port.
In your Virtual Private Cloud (VPC), check the route table for a subnet that
sends all traffic outside the VPC to an internet gateway.
In your VPC, verify the network Access Control List (ACL) for that subnet to
allow inbound and outbound traffic from local IP addresses to the proper port.
If you have a firewall on your machine, or it is on a corporate network, ask the
administrator whether it allows inbound and outbound traffic from a computer
on port 22 for Linux instances, or 3389 for Windows instances.
If the instance doesn't have a public IP address, you can associate an Elastic IP
address with it.
Use an appropriate username for the AMI. Some common username include
ec2-user for Amazon Linux AMI, ubuntu is Ubuntu AMI, root/ec2-user for
SUSE Linux/RHEL5 AMI, and fedora/ec2-user for Fedora AMI.
Verify the CPU load on the instance if the server is overloaded. You can adjust
this in the following ways:

You can scale the load automatically with Elastic Load Balancing or
Auto Scaling if it is viable
You can move to a new and larger instance type if the load is
growing steadily

User key not recognized by server:

You will get a Permission denied error if you are trying to connect with a key that is not
recognized or not the format required by the server.

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[251]

Host key not found, Permission denied (publickey), or Authentication failed, permission
denied:

If you get an error message such as Host key not found in [directory], Permission denied
(publickey), or Authentication failed, permission denied, while connecting to your
instance using SSH, then check the appropriate username and private key file were used for
the instance.

Unprotected private key file:

Other users must not access your private key file for read and write operations, and it
should be protected by you. You can fix this error by changing the chmod permission to
0400 for your private key file.

Server refused our key or No supported authentication methods available:

If you get an error message such as Error: Server refused our key or Error: No supported
authentication methods available, while connecting to your instance using PuTTY, then
check the appropriate username for the AMI and private key file has been converted
correctly into the required format used by PuTTY (.ppk).

Error using MindTerm on Safari Browser:

If you get an error message such as Error connecting to instance_ip, reason: -> Key
exchange failed: Host authentication failed, while connecting to your instance using
MindTerm on the Safari browser, the browser's security settings must allow the AWS
Management Console to run the Java plugin in unsafe mode.

Error using macOS RDP client:

If you get an error message such as Remote Desktop Connection cannot verify the identity
of the computer that you want to connect to, while connecting to your instance using the
Remote Desktop Connection client from the Microsoft website, then download the
Remote Desktop app from the Apple store and use this application to connect to the
instance.

Cannot ping instance:

The ping command is a type of ICMP traffic and if you are not able to ping the instance,
then check the inbound rules. If you are not able to execute a ping command from the
instance, then check the outbound rules.

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[252]

Troubleshooting stopping your instance
If your EBS-backed instance stopped and is stuck in the stopping state, then it might be an
issue with the underlying host computer. You can stop the instance again using the -force
option from the command line using the stop-instances command. Again, if you are
unable to stop it, you can create an AMI from that instance and launch another instance. If
you are unable to create an AMI for the instance, then you can create a replacement
instance. If you are unable to create a replacement instance, then post a request for help to
the Amazon EC2 forum, including your instance ID, and listing the steps you followed.

Troubleshooting terminating (shutting down)
your instance
It you terminate your instance, it will change its state to shutting-down. But sometimes the
following scenarios happen:

Instance termination delay:

The instance is in the shutting-down state for more time than a few minutes, due
to shutdown scripts run by the instance
Problems with the underlying host machine
Amazon EC2 will consider this instance as a stuck instance and terminate it

Terminated instance still displayed:

If the terminated instance still remains visible and has not been deleted, then you can
contact the support team.

Automatically launch or terminate instances:

Following are reasons that you have used Amazon EC2 Auto Scaling or Elastic Beanstalk to
scale your resources automatically based on the requirement:

If you terminate the instance and AWS is launching a new instance
If you launch a new instance and AWS is terminating another instance
You stop an instance and AWS is launching a new instance

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[253]

Troubleshooting instance recovery failures
Here are scenarios where your instance failed because of automatic recovery:

Insufficient temporary capacity of replacement hardware
The storage instance has unsupported configuration for automatic instance
recovery
A Service Health Dashboard event prevents the recovery process from executing
it successfully
The instance has already reached its maximum daily allowance of recovery
attempts

Troubleshooting instances with failed status
checks
Sometimes an instance status check fails due to the instance not running as expected. In a
Linux-based instance, we might solve the issue by restarting.

If you see the error after rebooting the instance, then try to retrieve system logs. Here are
some of the common system log errors and general actions to fix them:

Out of memory: Kill the process:

VFS: Unable to mount root fs on unknown-block (Root filesystem mismatch):

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[254]

XENBUS: Timeout connecting to devices (Xenbus timeout):

General actions to fix the preceding errors:

Here are some errors and suggestions for solving them:

I/O Error (Block Device Failure):

I/O ERROR: neither local nor remote disk (Broken distributed block device):

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[255]

General actions to fix the preceding errors:

Here are some errors and suggestions to solve them:

request_module: runaway loop modprobe (Looping legacy kernel modprobe on
older Linux versions):

FATAL: kernel too old and fsck: No such file or directory while trying to open
/dev (Kernel and AMI mismatch):

FATAL: Could not load /lib/modules or BusyBox (Missing kernel modules):

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[256]

ERROR Invalid kernel (EC2 incompatible kernel):

fsck: No such file or directory while trying to open... (File system not found):

fsck died with exit status... (Missing device):

General actions to fix the preceding errors:

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[257]

Here are some errors and suggestions to solve them:

General error mounting filesystems (Failed mount):

Error: Unable to determine major/minor number of root device... (Root file
system/device mismatch):

XENBUS: Device with no driver:

Bringing up interface eth0: Device eth0 has different MAC address than
expected, ignoring. (Hard-coded MAC address):

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[258]

Unable to load SELinux Policy. Machine is in enforcing mode. Halting now.
(SELinux misconfiguration):

General actions to fix preceding errors:

Troubleshooting instance capacity
You will get the following error for instance capacity:

Error: InsufficientInstanceCapacity

When AWS doesn't have enough capacity to serve your request, you will get this
error while launching or starting an EC2 instance.

You can try the following ways to fix this:

Wait for a few minutes and try to submit the request again
Reduce the number of instances and submit a new request
Submit a new request without specifying Availability Zone and/or
different instance type
Try to purchase Reserved Instances for long-term capacity
reservation

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[259]

Error: InstanceLimitExceeded

When you reach the concurrent running instance limit, you will get this error. In
that case, you can send a request to the Amazon support team to increase the EC2
Instance limit.

Getting console output and rebooting instances
You can use the console output to diagnose the problems. It is useful for troubleshooting
service configuration issues and kernel problems that cause instances to terminate or
become unreachable. You can reboot the instance when it is unreachable.

My instance is booting from the wrong volume
Sometimes volumes other than the attached volume become the root volume of the
instance. You can solve this by using the same e2label command to change the label. In
some cases, UUID also resolves this issue.

Troubleshooting Windows instances
Here are some tips to help you troubleshoot Amazon EC2 Windows instance problems:

High CPU usage shortly after Windows starts:

If you have set Check for updates but let me choose whether to download and
install them for Windows updates, then it will consume 50-99% of the CPU on the
instance. It will cause a problem for your application and you can manually
change it.

No console output:

In a Windows instance, the EC2Config service, which provides the console
output, is disabled by default. To get the output on the console, you need to
enable it.

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[260]

Instance terminates immediately:

It is always best practice to check the status after you launch an instance and it
should be in running state after the pending state and not the terminated state.

From the Amazon EC2 console, AWS CLI, or API, you can get the reason for
instance termination.

For that, log on to the Amazon EC2 console, navigate to the Instances, and select
your instance. Under the Description tab, check State transition reason and State
transition reason message.

Or you can execute this command on AWS CLI: awsec2 describe-instances
--instance-id instance_id passing with your instance ID. It will return a
JSON response. Check the code and message under the StateReason tag.

Remote Desktop can't connect to the remote computer:

Try the following to resolve issues related to connecting to your instance:

Verify the public DNS hostname.
If the instance doesn't have a public IP address, then you can
associate an Elastic IP address with it.
Check the security group rule to allow traffic from public IP
addresses on the proper port.
If you are getting an error, your credentials did not work, try
typing the password manually when prompted.
Verify your instance has passed status checks.
Check the password has not expired. You can reset it if it has.
If you are getting an error, The user cannot connect to the server
due to insufficient access privileges, verify you have given
permission to the user to log on locally.
If you are getting an error, Your Remote Desktop Services session
has ended. Another user connected to the remote computer, and
your connection was lost, it means you are trying to connect with
more than the maximum allowed concurrent RDP sessions.

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[261]

RDP displays a black screen instead of the desktop:

Try the following to resolve this issue:

Verify the console output for more information by getting the
system logs from the Amazon EC2 console
Make sure that you have the latest version of RDP Client
It might happen that the server is over utilized and stops
responding. You can monitor the instance and if need be, change to
a larger size

Instance loses network connectivity or scheduled tasks don't run when
expected:

Sometimes when you restart you instance, it will lose network connectivity and it
might be possible that the wrong time has been set for the instances. It might also
give you an error such as scheduled task not running as expected. To fix this error
and set the timezone other than UTC for the instance persistently you must set
the RealTimeIsUniversal registry key.

Insufficient instance capacity:

We have covered this topic in the Troubleshooting instance capacity section.

EBS volumes don't initialize on Windows Server 2016 AMIs:

The EC2Config service has been deprecated on Windows Server 2016 AMIs and
replaced by EC2Launch. EC2Launch is a bundle of Windows PowerShell scripts
that perform many of the tasks performed by the EC2Config service. By default,
EC2Launch does not initialize secondary volumes. You can configure EC2Launch
to initialize disks automatically by either scheduling the script to run, or by calling
EC2Launch in user data.

Common messages:

This section includes tips to help you troubleshoot issues based on common
messages:

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[262]

Password is not available:

To solve this issue, you can use the account and password from the original
instance from which AMI was created, or retrieve an autogenerated password for
an Administrator account. You can also reset the password if password
generation is disabled.

Password not available yet:

If you retrieve the autogenerated password and get this error, and if it takes more
than 4 minutes, then it might be possible that EC2Config is disabled. Also, verify
that the ec2:GetPasswordData action is allowed in IAM for that user.

Cannot retrieve Windows password:

When you launch the instance and don't specify the key-value pair, you will get
this message. You can terminate the instance and launch a new instance with a
specified key to fix this issue.

Waiting for the metadata service:

By default, the WaitForMetaDataAvailable setting ensures that the EC2Config
service will wait for the instance metadata to be accessible before continuing the
boot process.

You can try the following if you are unable to connect to the metadata server:

Verify that you have the latest version of the EC2Config service
downloaded and installed
If using a Windows instance running RedHat PV drivers then you
need to update the Citrix PV drivers
Ensure that IPSec, firewall, and proxy are not blocking the
outgoing traffic for the metadata service or KMS service
Make sure that you have a route to the metadata service and also
make sure there are no network issues that affect the Availability
Zone for the instance

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[263]

Unable to activate Windows:

You will get this error when Windows try to activate. The error code is
0xC004F074, when your Windows instance is unable to reach the Windows KMS
activation. This Windows KMS activation must be within 180 days. EC2Config
will connect to the KMS Server before the activation period expires and will
ensure that the Windows instance will remain activated.

Here are some of the points to verify for Windows activation issues:

You have routes for KMS Servers and KMS Client key is set
properly.
Make sure that the system has the correct time and time zone. You
can temporarily disable Windows Firewall if it is enabled.

Windows is not genuine (0x80070005):

Windows KMS activation is used by a Windows instance. If a Windows instance
fails to complete the activation process it gives an error that Windows is not
genuine.

No Terminal Server License Servers available to provide a license:

By default, two simultaneous users can connect to the Remote Desktop for
Windows Server. You have to purchase a Remote Desktop Service Client Access
License (CAL) if you want to provide access for more than two simultaneous
users. Then, you have to install the Remote Desktop Session Host and Remote
Desktop Licensing Server roles.

In the next section, we will learn about Elastic Load Balancing, Auto Scaling, and Fault
tolerance.

Elastic Load Balancing, auto scaling, and
fault tolerant
Elastic Load Balancing (ELB) is a service from AWS to balance the load automatically. It
helps to distribute incoming traffic and scale resources automatically to meet demands.
Users enable it within a single or multiple availability zones to maintain application
performance.

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[264]

Features of ELB
ELB provides these features:

Highly available: In ELB, incoming traffic will be distributed automatically
between multiple targets such as Amazon EC2 instances, IP addresses, and
containers in a single or multiple Availability Zones.
Health checks: In ELB, it will detect unhealthy instances or targets. It will not
send traffic to them. This traffic will be sent to healthy instances or targets.
Security Features: You can create security groups in Virtual Private Cloud
(VPC) and manage them. These security groups are associated with ELB and
provide additional networking and security. You can create non-internet-facing
or internal load balancers.
TLS termination: ELB provides SSL decryption and integrated certificate
management. It provides you the facility to centrally manage SSL settings for the
load balancer and offload the CPU intensive work for the application.
Layer 4 or Layer 7 Load Balancing: Provides you with the load balance from the
connection layer (Layer 4) for applications that rely on the TCP protocol. It also
provides you with the load balance from the application layer (Layer 7) for
applications that rely on the HTTP/HTTPS protocol.
Operational Monitoring: You can get real-time performance monitoring and
request tracing for your application by integrating ELB with Amazon
CloudWatch.

ELB supports three types of load balancer – Application Load Balancer (ALB) for flexible
applications, Network Load Balancer (NLB) for extreme performance, and static IP, and
Classic Load Balancer (CLB) for existing applications built on the EC2-classic network.
Now let's look at some of the key features of all these load balancers.

Benefits of Application Load Balancer
Following are the benefits of Application Load Balancer (ALB):

ALB operates at Layer-7 specific features. It is used to load balance for
HTTP/HTTPS applications.
It supports HTTPS termination between the load balancer and clients.
Server Name Indication (SNI) is an extension of the TLS protocol. It indicates
that it should connect for the TLS handshake. ALB supports a smart certificate
algorithm with SNI to determine the best certificate to be used.

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[265]

Host-based routing uses the Host field of the HTTP header to route client
requests.
Path-based routing uses the URL path of the HTTP header to route client
requests.
ALB supports HTTP/2, which is a newer version of HyperText Transfer Protocol
(HTTP) that allows single and multiplexed connections.
ALB supports WebSockets. WebSockets are the protocol for real-time exchange
of messages without requests from end users.
On ALB, you can enable delete protection. It will prevent from accidental
deletion.
ALB supports sticky sessions. A Sticky session is a mechanism where the same
target will receive the request from the same client. ALB uses cookies generated
by the load balancer to achieve this. You can define this stickiness at the target
group level.
ALB can integrate with Amazon CloudWatch to get metrics reports such as error
counts, error types, request counts, and request latency.

Benefits of Network Load Balancer
Following are the benefits of Network Load Balancer (NLB):

NLB can handle millions of requests per second, maintaining ultra-low latencies.
It can handle volatile and sudden traffic patterns using a static single IP address
per Availability Zone.
NLB is connection-based load balancing. You can route connections to different
targets such as Amazon EC2 instances, containers, microservices, and IP
addresses.
NLB is highly available and it distributes incoming traffic across targets from
clients within the same Availability Zones. It only routes traffic to healthy targets.
NLB preserves source IP address, supports static IP addresses, and provides the
option to allow Elastic IP addresses.
If NLB itself is unhealthy in a specific zone, then Amazon Route 53 will redirect
traffic to NLB in a different Availability Zone.
NLB can integrate with other AWS services such as Amazon Route 53, Auto
Scaling, AWS CodeDeploy, AWS CloudFormation, Amazon EC2 Container
Service, and AWS Config.
NLB supports the same API as ALB and it provides support for long-lived TCP
connections.

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[266]

NLB can integrate with Amazon CloudWatch to get metrics reports such as New
Flow Count, Active Flow Count, Healthy Host Count, and Processed Bytes. It is
also integrated with AWS CloudTrail to tracks API calls.

Benefits of Classic Load Balancer
Following are the benefits of Classic Load Balancer (CLB):

CLB operates at both the request and connection level, and provides basic load
balancing
CLB is highly available and distributes incoming traffic to single or multiple
Availability Zones
CLB supports SSL termination, which includes SSL decryption offloading,
centrally managed SSL certification, and backend instance encryption
CLB supports sticky user sessions using cookies
CLB supports IPv4 and IPv6 for EC2-classic networks
CLB uses both Layer 4 and Layer 7 for load balancing, which support the TCP
and HTTP/HTTPS protocols, respectively
CLB can integrate with Amazon CloudWatch to get metrics reports, such as
request latency and request count

Here are the differences between these three load balancers:

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[267]

Auto scaling and fault tolerance
AWS Auto Scaling monitors the application and ensures that the correct number of EC2
instances are available; if not, then it will automatically adjust and scale the capacity to
maintain predictable and steady performance at the lowest cost. AWS Auto Scaling
provides a powerful and simple console to set up the application scaling easily for multiple
services and multiple resources.

For Amazon EC2 Auto Scaling, collections of EC2 instances are created and known as Auto
Scaling Groups (ASGs). In an Auto Scaling Group, you can define the minimum and
maximum number of instances, so an Auto Scaling Group will not go below or above these
sizes, respectively.

Now, let's understand Auto Scaling capabilities on AWS:

When AMIs are invalid or removed, ASGs are unable to launch new EC2
instances and fail to handle the load. This will directly have a serious impact on
application performance.

Make sure that ASG's launch configuration is using active Amazon
Machine Images.

When ELBs are inactive or deleted, ASGs are unable to launch new backend
instances and fail to add compute power to the instances. This will directly have a
significant impact on application performance.

Make sure that ASGs are using active Elastic Load Balancers to
keep the auto-scaling process healthy and evenly distribute
application loads.

When Security Groups are inactive or deleted, ASGs are unable to add compute
resources. It will have a negative impact on application performance.

Make sure that ASGs' launch configurations use active Security
Groups to keep the auto-scaling process healthy.

Sometimes, newly launched EC2 instances will take some time to boot, configure
the software, and take the workload, so for that, ASGs need to implement a cool-
down period to suspend any scaling activities temporarily.

Ensure that ASGs properly configure the cool-down period and
provide some time to newly launched EC2 instances to start up and
handle the application traffic.

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[268]

You are getting high network latency by using different Availability Zones for
your load balancers and ASGs.

Make sure that the ASG is using the same Availability Zone for its
associated load balancers to increase performance and reduce
latency.

ASG can increase the availability and reliability of the application. It can use the
notifications to auto scale the environment by mitigating any scaling issues and
act fast.

Make sure that you have configured notifications properly for ASG
to scale any event to launch or terminate the instances.

If the health check is not properly configured for ASGs, then it might decrease the
availability and/or reliability of applications.

Make sure that you have properly configured the health check
feature of ASGs. This feature will enable health check for ELB and
register healthy EC2 instances.

You have set up your AWS ASGs in a multi-AZ environment, but if one AZ is not
available or unhealthy, then ASG should launch new instances in healthy and
unaffected AZs to provide reliability and availability.

Make sure that ASG will set up on multi-AZ environment within
AWS an region.

ASGs should be monitored for suspended processes. It also resumes promptly,
maintaining the ASGs reliability.

Make sure that there are no suspended processes in the ASG that
disrupt the auto scaling workflow.

It is a best practice to identify unused or empty Auto Scaling Launch
configuration templates and delete them from the account for better management
of Auto Scaling components.
It is best practice to identify unused or empty Auto Scaling Groups and delete
them for better management and cost optimization of Auto Scaling components.

Fault tolerance in AWS for Amazon EC2
Following are a few of the points regarding Fault tolerance on an Amazon EC2 instance:

You can increase the fault tolerance in your application by taking advantage of
health checks of instances, auto scaling, multi-AZ environments, and backups.

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[269]

Snapshots of Amazon Elastic Block Store (Amazon EBS) volumes either in use
or available and you can verify EBS volume by its age. Failures can occur even
though the EBS volumes are replicated. For durable storage, persist your
snapshots to Amazon Simple Storage Service (Amazon S3).
You can protect your application from single point of failure by launching the
instances in the same region but in multiple Availability Zones.
Verify the configuration of the load balancer. It is recommended to use an equal
number of instances within the same region across multiple AZs when using
Elastic Load Balancer for your Amazon EC2, to increase fault tolerance levels.
Proper configuration of the load balancer also helps in cost optimization.
Verify the available resources that are associated with Auto Scaling Group and
launch configurations. Auto Scaling Groups will launch only healthy instances.
This helps to handle spikes by automatically launching and terminating the
resources.
Check whether ELB connection draining is enabled or not. If connection draining
is enabled, then the load balancer will not send any new requests to the deregister
instance, but will keep serving to the active request. If connection draining is not
enabled, then the load balancer will remove the Amazon EC2 instance, and not
send any requests to this connection and close it.
Verify that cross-zone load balancing is not enabled for the load balancer.
Regardless of the Availability Zone of the instance, cross-zone load balancing will
help to distribute requests evenly. It will also reduce the uneven distribution of
traffic and make it easier to manage and deploy the application.
Verify your EC2 Config service for Amazon EC2 Windows instances. It will alert
you if the EC2 Config agent is not configured properly or is out of date. It is
always recommended to use the latest EC2 Config version.

In the next section, we will look at monitoring and optimizing the cost of your EC2
infrastructure.

Monitoring and optimizing the cost of the
EC2 infrastructure
In traditional on-premises applications, optimization of cost is really very challenging
because you have to predict future business needs and capacity.

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[270]

The following best practices will help you to build a cost-optimized architecture:

Make sure that your demands and costs move in line with each other
Analyze the cost
Ensure that costs will reduce with time
Use appropriate AWS resources to minimize the costs

Optimization of cost is a continuous process in the improvement and refinement of your
system over its complete life cycle. Your system should utilize all the resources fully and
meet its functional requirements while minimizing costs.

You can use the following design principles to optimize costs in the cloud:

Adopt a model for consumption: You should adopt a model that will help you to
identify the consumption of computing resources, and it should increase or
decrease through auto scaling as per the business requirements. It should not be
based on forecasting. Let's say your typical environment is used for eight hours
on weekdays and you can manage it by stopping the resources when it is not
used. This will save you 75% of your costs, or you can say it saves 128 hours of
charges.
Measure efficiency: You should measure the cost associated with business
output systems. You should understand by increasing or decreasing the output
by reducing its cost.
Cost savings on data center operations: AWS provides all kinds of IT
infrastructure as per your business needs, to save on data center operations and
concentrate on client needs to make your business successful.
Analyze your cost: It is always good to optimize resources and analyze the cost
of the systems accurately to get the maximum ROI.
Reduction of cost by using managed services: Managed services removes the
burden at the operational level and scale in the cloud to provide lower cost
service or its transactions.

As we have discussed design principles, let's see some best practices for cost optimization:

Cost efficient resources
Supply-demand matching
Know your expenses
Optimization over time

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[271]

Cost efficient resources
You should use the appropriate resources, instances, and managed services to save on costs.

AWS provides a vast variety of cost-efficient and flexible pricing options to use EC2
instances as per your requirements:

EC2 instances Description

On-demand instances Pay per hour; no minimum commitments

Reserved instances Reserved capacity; 1- or 3-year commitments; save up to 75% off
then on-demand instance

Spot instances
Can bid for unused Amazon EC2 instances; on-demand instances
at a discounted price; no minimum commitments; Useful for spot
block, fleet, big data

You can regularly review AWS usage by monitoring the resource utilization and adjusting
the deployments by using AWS Trusted Advisor. You can also use the AWS Cost Explorer
tool to see the pattern of your AWS resources over time, track trends to understand their
usage, and identify key areas for improvement.

You should consider the cost when you are selecting AWS resources such as Amazon EC2,
Amazon S3, or Amazon EBS, known as building blocks, or Amazon DynamoDB and
Amazon RDS, known as managed services. By using these services, you can optimize the
cost of your architecture. Using managed services will remove the administration and
operation overhead.

Analyze and identify the service that will reduce cost by optimizing the license, using
container-based or serverless architecture, and using suitable storage, database, and
application-level services.

You should select the right type, size, provisioned throughput, and storage of resources to
optimize costs.

To meet cost targets, you should select the appropriate pricing model as per your workload.
You should also consider the region cost while selecting any resources.

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[272]

Supply-demand matching
To reduce the cost of a system, you can match supply with demand, and that supply should
be sufficient supply either it is provisioning the resources or individual failure of resources.
When the demand is varied or fixed, then automation helps to ensure that it will not affect
the cost significantly. In that case, you can use managed services.

In AWS, you can automatically match demand by provisioning resources for Auto Scaling,
and using the buffer and time-based approaches to allow new resources or remove the
existing resources.

To match supply and demand, you should consider your usage patterns and the time
required to provision new resources. You must ensure that whatever you pay is used and
avoid under utilizing instances.

You can also consider the following approach:

Demand-based: To respond and handle variable demand, you can use Auto
Scaling. Auto Scaling will help to add or remove new resources without
overspending.
Buffer-based: Buffer work until you have enough capacity to process it.
Time-based: Follow a time-based scheduling approach, such as monthly,
quarterly, or annually. Instance can be turned off over weekend.

Know your expenses
You should encourage innovation for faster development and deployment, and over time
eliminate manual processes associated with hardware specification, negotiating quotations,
provisioning on-premises infrastructure, managing orders, and deploying resources. You
should understand which products are profitable and where to allocate the budget.

In AWS, allocation tags are used to categorize and track AWS costs. These tags are used to
generate a cost allocation report with cost and usage, to organize the costs across multiple
services.

You can use the AWS Simple Monthly Calculator to calculate your monthly data transfer
costs and set billing alerts to notify of predicted overspending.

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[273]

You can set Amazon CloudWatch alarms and Amazon Simple Notification Service
(Amazon SNS) to send notifications to warn you if the forecasted amount will go over your
budgeted amount.

You should consider the data transfer charges in your architectural decisions to save some
of the costs. For example, a content provider company can save costs by serving content
using Amazon CloudFront Content Delivery Network (CDN) instead of serving from an
Amazon S3 bucket.

You can optimize data transfer by using proper application design, multiple AZs, region
selection, CDN, or AWS Direct Connect.

You should monitor your usage by defining policies and procedures to control costs. You
should consider who is using which services, at what cost, by using AWS-provided tools to
get a proper understanding of the business needs.

You can tag all the resources in your infrastructure, load and interpret the billing reports,
and notify the team if spending moves outside the limits to make them aware about
expenditure.

You should also consider the following points:

Decommission resources that are non-critical or not required
Temporarily stop the resource if it is not needed
Handle the resource gracefully for termination
Identify and decommission orphaned resources

You should also govern AWS usage by establishing groups/roles and tracking the project
life cycle to avoid using unnecessary resources.

Optimization over time
It is always good practice to be aware of the new services/features available from AWS and
review your existing architecture to make sure that it is the most cost effective. When
requirements change or new requirements are added, be sure to decommission resources,
entire services, or systems that are not required. AWS managed services help to optimize
your solution significantly.

You can visit the What's New section on the AWS website and the AWS Blog to be informed
about newly launched service or features. AWS Trusted Advisor also inspects on your
behalf to find idle resources or eliminate unused resources.

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[274]

In the next section, we will understand how to configure Elastic Load Balancer and Auto
Scaling, and implement it in a CI and CD workflow.

Continuous Integration and Continuous
Deployment workflow
In this section, we will understand two things to configure, Load Balancing and Auto
Scaling. We will continue with the same example we discussed in Chapter 5, CI/CD in AWS
Part 2 – CodeDeploy, CodePipeline, and CodeStar and update the example with Auto Scaling
Group. We will stop the instance and see the behavior in the EC2 console, and Auto Scaling
Group should automatically launch the instances with a predefined script.

Now, let's see how to create and configure Load Balancing. Load Balancing is divided into
two parts – Load Balancers and Target Groups.

As we already discussed, Load Balancers come in three types. You can choose whichever
Load Balancer you need:

In this example, if you select Application Load Balancer, then it will navigate to the
Configure Load Balancer screen. You can add the required fields, such as Name, and select
the specific Availability Zone. You can also add Listeners such as HTTPS:

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[275]

You will see the following screen if you have added the HTTPS Listener in the previous
screen. Here, you have to select the value for Certificate type, Certificate name, and
Security Policy. In the next step, you can configure your security groups:

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[276]

As per the following image, in step 4 you can select the routing configurations and health
check settings. The name of the target group is mandatory:

On the next screen, you can register targets and select instances. Then you can move to the
Review page. Once you review configuration information, you can create the Launch
Configuration. This configuration will also create the target group, which we have
configured in Step 4. We can attach this load balancer to the Auto Scaling Group.

Now, let's understand how to create and configure Auto Scaling. Auto Scaling is divided
into two parts. One is Launch Configuration, and the other is Auto Scaling Group.

Launch Configuration in Auto Scaling Group is a template used to launch an EC2 instance.
You should specify the launch information for the instance, such as the Amazon Machine
Image (AMI) ID, instance type, one or more security groups, key pair, and block device
mappings. You can use the same information if you already launched the EC2 instance
before.

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[277]

You can create Auto Scaling Group by specifying the launch template, EC2
instance, or launch configuration. It is recommended to use launch
templates instead of launch configurations.

You can specify one launch configuration at a time for an Auto Scaling Group. You cannot
change the launch configuration once you have created it. You must create a new launch
configuration and update the Auto scaling Group with the new launch configuration.

The Auto Scaling Group contains a collection of EC2 instances with similar characteristics
and is treated as a logical group to scale and manage the instance. It will automatically scale
the instance based on the criteria or maintain a fixed number of instances. The Amazon EC2
Auto Scaling service has core functionality to automatically scale and maintain the number
of instances in Auto Scaling Group.

When you select Launch Configurations or Auto Scaling Groups, you will be redirected to
the following screen if you don't have any Launch Configurations or Auto Scaling Groups
created:

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[278]

Now, click on Create Auto Scaling Group.

This will navigate to the quick start screen, where you can select AMIs, such as Amazon
Linux AMI, Red Hat Enterprise Linux 7.2, Ubuntu Server 14.04 LTS, or Microsoft Windows
Server 2012 R2 Base, then Select it.

On the next page, select the instance type and select next: Configure details.

On the Configure details page, enter the name for the launch configurations and select the
IAM role. Expand Advanced Details and add the value for the user data field.

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[279]

In this example, we are integrating Auto Scaling with AWS CodeDeploy. So, add the
following code into the user data field as per the selected instance. Also make sure to
change the bucket name, because this is the name of the Amazon S3 bucket that contains the
required AWS CodeDeploy Resource Kit files for your region. If you are in the N.Virginia
region then you can replace aws-codedeploy-us-east-1 with bucket-name in following
code:

After that, leave the rest of the fields at their defaults and choose Skip to review.

On the Review page, select Create Launch Configuration.

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[280]

Once the launch configuration has been created, then you will navigate to the Create Auto
Scaling Group screen. Add the value for Group name and select the subnet as per your
network. On the Advanced Details screen, you can select Target Groups, which we created
in an earlier section. Click on Next: Configure scaling policies:

In the next section, you can add scaling policies, or you can skip that section with the
default value Keep this group at its initial size and click Next: Configure Notifications. In
the next section, you can add notifications, or you can skip that section and click on Review.
Now, select the Create Auto Scaling group and then select Close. In the Auto Scaling
Console, select the newly created instance tab. Wait until you see InService in the Lifecycle
column, and Healthy in the Health Status column:

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[281]

Now we have configured the Load Balancer and Auto Scaling Group, we will verify the
changes by stopping the existing resources. This will automatically start a new instance and
copy the required resources into the new instance. In the following screenshot, the instance
ID ending in 2fb has been terminated, while 21c is initializing:

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[282]

You can verify from the Auto Scaling Group that the instance ID ending in 2fb is in the
Unhealthy Status and 21c is in the Healthy Status:

As we already discussed in Chapter 5, CodeDeploy, CodePipeline, and CodeStar, we can
configure an Amazon EC2 instance as follows:

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[283]

Now you can change this configuration from Amazon EC2 instances to Auto Scaling
Groups. An Auto Scaling Group will be populated with all the available groups, and also
display the instances. You can see the instances ending with the 21c instance ID. You can
enable the load balancer by selecting the Enable load balancing checkbox and choosing the
appropriate load balancer from the dropdown:

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[284]

After making these changes, verify your AWS CodePipeline. It should execute the whole
process successfully:

Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing Chapter 8

[285]

You can verify your application once it has been deployed successfully, by executing the
public DNS. You will see the following output:

We have completed this section by implementing a CI and CD environment.

Summary
So far, we have learned Amazon EC2 best practices and troubleshooting, and understood
Elastic Load Balancing, Auto Scaling, and fault tolerance. We have also learned about the
optimization of cost and implemented Auto Scaling and Load Balancing in a CI and CD
environment.

In the next chapter, we will implement CI and CD on an Amazon EC2 Container Service.

9
Amazon EC2 Container Service

In the previous chapter, we discussed Amazon EC2's best practices and troubleshooting
capabilities. We also learned about Elastic Load Balancing, Auto Scaling, fault tolerance,
and monitoring and optimizing the infrastructure cost. We also modified AWS CodeDeploy
for CI/CD applications with Auto Scaling.

In this chapter, we will look at Docker, container instances, clusters, scheduling tasks, and
Windows containers. Finally, we will deploy an example of a CI/CD application with
Amazon EC2 Container Services.

In this chapter, we will cover the following topics:

Docker, container instances, clusters
Scheduling tasks
Windows containers (beta)
Monitoring and optimizing the cost of the infrastructure
Continuous Integration (CI) and Continuous Deployment (CD) workflow

Now let's start with our first topic, Docker:

Docker
As we've already learned in Chapter 7, Evaluating the Best Architecture, Docker is a Linux-
based container technology. It allows your distributed applications to build, run, test and
deploy. The Amazon EC2 Container Service provides container-based services that use
Docker images in their task definitions and start containers on an EC2 instance.

Amazon EC2 Container Service Chapter 9

[287]

Let's look at an example of Docker. You will install Docker, create a Docker image, and
verify a simple web page.

Docker is currently available for different operating systems, such as Linux distributions,
Windows, and macOS. You can launch an EC2 Linux instance, if you have any, and install
Docker. You can use Docker without a local machine.

The following are the steps to install a Docker image on the instance of an Amazon Linux-
based AMI:

Launch an Amazon Linux AMI instance and connect to it.1.
Execute the following command to update the installed package. It will also2.
cache on the instance:

sudo yum update –y

Now, execute the following command to install the package for the Docker3.
Community Edition on your instance:

sudo yum install -y docker

Execute the following command to start the Docker service:4.

sudo service docker start

To execute the Docker command on your instance without sudo, you can add -5.
user to the Docker group. In this case, the user is ec2-user:

sudo usermod -a -G docker ec2-user

To get new group permissions for Docker, you must log out and log in to the instance. You
can close your existing terminal window to log out and reconnect it with a new session. You
will get the correct Docker group permissions in your new SSH session. To make sure you
can execute the following command, it should be executed without a sudo command:

docker info

Amazon EC2 Container Service Chapter 9

[288]

Note that in some cases you will get the following error:

Cannot connect to the Docker daemon. Is the docker daemon running on this host?

This means you have to reboot your instance to give permission for the ec2-user to access
the Docker commands.

Once Docker has installed successfully, you can create a Docker image of a simple web
application, and test it on a browser. Once it works successfully, then you can push this
image to Amazon ECR or Docker Hub, to use it as an Amazon ECS task definition.

Now, let's create the manifest file called a Dockerfile. It will describe the base image that
you will use for the Docker image, and other information such as what software packages
you want to install and run:

touch Dockerfile

Add the following content in this Dockerfile. It will execute the FROM command to access
the Ubuntu image. It will execute the RUN command to update the software package cache
and install the Apache web server. It will create the index.html and write the content in
this file. You can expose port 80 with the EXPOSE command on the container and the CMD
command to start the web server:

FROM ubuntu:12.04
Update the docker and Install dependency like apache
RUN apt-get update -y
RUN apt-get install -y apache2

Create web page with Hi from Packt message
RUN echo "Hi from Packt!!!" > /var/www/index.html

Configure the apache
RUN a2enmod rewrite
RUN chown -R www-data:www-data /var/www
ENV APACHE_RUN_USER www-data
ENV APACHE_RUN_GROUP www-data
ENV APACHE_LOG_DIR /var/log/apache2
Mention the port number
EXPOSE 80

Command to start apache web server
CMD ["/usr/sbin/apache2", "-D", "FOREGROUND"]

Amazon EC2 Container Service Chapter 9

[289]

With this created Dockerfile, you can execute the following command to build the Docker
image:

docker build –t packt-demo .

In some Docker versions, you need to specify the full path to your
Dockerfile, instead of a relative path.

Amazon EC2 Container Service Chapter 9

[290]

You can execute the docker images command to verify that the image has been created
successfully. You can also add a filter attribute to get a particular image:

docker images --filter reference=packt-demo

Now, execute docker run with the –p 80:80 option which will expose port 80 with
container port 80.

You can ignore the warning message for Apache web server in the
terminal window – Could not reliably determine the server's fully
qualified domain name.

You can test the application by pointing to the server that is hosting the container and
running Docker in the following ways:

You can point to http://localhost/ if you are running it locally.
You can connect with the public DNS value if you are running the EC2 instances.
This is the same address from which you were connected to the instance with
SSH. Ensure that you are allowing inbound traffic on port 80 in the security
group.
You can use the docker-machine ip command to find out the IP address of the
virtual box, if you are using Windows or a Mac machine. You can replace your
machine-name with a Docker machine:

docker-machine ip machine-name

You can see the web page with Hi from Packt!!! by entering the localhost or public DNS or
IP address:

Amazon EC2 Container Service Chapter 9

[291]

Once you verify the application, you can stop the Docker container with Ctrl + C.

Amazon Elastic Container Registry (Amazon ECR) is a managed Docker registry service
from AWS where users can push, pull, and manage images from Docker CLI.

You need AWS CLI for this section. You can download it from the AWS
website, if you don't have it.

You can execute create-repository to store your packt-demo image in the Amazon
ECR repository and save the repositoryUri from the output:

aws ecr create-repository --repository-name packt-demo

The output is as follows:

{
 "repository": {
 "registryId": "aws_account_id",
 "repositoryName": " packt-demo",
 "repositoryArn": "arn:aws:ecr:us-
east-1:aws_account_id:repository/packt-demo",
 "createdAt": 1519231176.0,
 "repositoryUri": "aws_account_id.dkr.ecr.us-
east-1.amazonaws.com/packt-demo"
 }
}

Tag the packt-demo image with the repositoryUri value from the output of the previous
step:

docker tag packt-demo aws_account_id.dkr.ecr.us-east-1.amazonaws.com/packt-
demo

To get the docker login authentication command, you need to execute the aws ecr
get-login --no-include-email command, given here, to get the string for your
registry.

Amazon EC2 Container Service Chapter 9

[292]

It is recommended you use AWS CLI, starting with version 1.11.91 or later
for the latest versions of Docker (17.06 or later). You can check your AWS
CLI version by executing the aws --version command. If your Docker
version is 17.06 or later, you can include the --no-include-email option
after get-login. Install a recent version of AWS CLI, if you are getting an
error, such as unknown options: --no-include-email.

aws ecr get-login --no-include-email

You will get the docker login command with an authorization token, as the output of the
previous get-login command. The validity of an authorization token is 12 hours.

In the preceding steps, the docker login command provides you with a
command string that might be visible by others on your system. There is a
risk that other users might see your authentication credentials and use
them to push and pull access to the repositories. You can omit them by
providing the –p password option and then entering the password when it
prompts.

With the repositoryUri value from the previous steps, you can push the image to
Amazon ECR:

docker push aws_account_id.dkr.ecr.us-east-1.amazonaws.com/packt-demo

Amazon EC2 Container Service Chapter 9

[293]

Once the image has been pushed, you can use this image in the Amazon ECS task definition
to run the task.

You can register the task definition with the image file. To do this, create the JSON file
(packt-demo-task-def.json) with the following information and specify the image field
value as repositoryUri from the previous section:

{
 "family": "packt-demo",
 "containerDefinitions": [
 {
 "name": "packt-demo",
 "image": "aws_account_id.dkr.ecr.us-east-1.amazonaws.com/packt-
demo",
 "cpu": 10,
 "memory": 500,
 "portMappings": [
 {"containerPort": 80, "hostPort": 80}
],
 "entryPoint": [
 "/usr/sbin/apache2", "-D", "FOREGROUND"
],
 "essential": true
 }
]
}

You can execute register-task-definition to register the task definition with the
JSON file, (packt-demo-task-def.json):

aws ecs register-task-definition --cli-input-json file://packt-demo-task-
def.json

Amazon EC2 Container Service Chapter 9

[294]

You need to launch the container instance into the cluster before you run tasks in Amazon
ECS.

Execute the following command to run the task with the task definition:

aws ecs run-task --task-definition packt-demo

So far, we have completed Docker and its installation. Now let's look at container instances.

Amazon EC2 Container Service Chapter 9

[295]

Container instances
We will divide container instances into the following different topics, and discuss them:

Basic concepts of a container instance
Life cycle of a container instance
Checking an instance role for an account
AMIs for container instances
Update notification subscribing to Amazon ECS–optimized AMI
Launching an Amazon ECS container instance
Bootstrapping container instances with Amazon EC2 user data
Connecting your container instance
Container instances with CloudWatch Logs
Container instance draining
Remotely managing your container instances
Deregistering your container instance

Basic concepts of a container instance
A container instance must run the Amazon ECS container agent to register the
clusters. If your AMI is Amazon ECS-optimized then the agent is already
installed. For different operating systems, you must install the agent.
The Amazon ECS container agent makes calls to the Amazon ECS on your behalf.
Your container instance must be launched with a proper IAM role to authenticate
the account and provide the appropriate resource permission.
If you need any external connectivity from the containers to your associated task,
you can map network ports to the ports on the host Amazon ECS container
instance, so that it is reachable from the internet. In this case, you must provide
inbound access to the ports that you want to expose in the security group.
It is recommended you launch the container instance inside the VPC to get more
control on the network and more extensive configuration capabilities.
External network access requires your container instances to communicate with
Amazon ECS service endpoints. If the container instance doesn't have a public IP
address, then it must use the Network Address Translation (NAT) to provide
the access.

Amazon EC2 Container Service Chapter 9

[296]

Your EC2 instance, selected for container service, determines the available
resource in the cluster. Amazon EC2 provides a variety of instance types, with
different CPUs, storage, memory, and networking capacity to run your tasks.
Each container instance stores unique state information locally and within
Amazon ECS:

You can't change the instance type and stop the container instance.
It is recommended you terminate the current container instance
and launch a new container instance with the required instance
size and the latest Amazon ECS-optimized AMI in the cluster.
Your instance cannot deregister in one cluster and reregister in
another cluster. For this kind of relocate container instance
scenario, it is recommended you terminate the existing container
instance from the cluster and launch a new container instance with
latest Amazon ECS-optimized AMIs in the required cluster.

Life cycle of a container instance
If an Amazon ECS container agent registers an instance in a cluster, then the agent
connection will report its status as TRUE and the container instance will report its status as
ACTIVE. This container instance will accept run task requests.

When you stop the Amazon ECS container instance, its status will remain as ACTIVE but
the agent connection's status will change to FALSE, within a few minutes. Again, when you
start the Amazon ECS container instance, this container agent reconnects with the Amazon
ECS service and makes the instance available to run the tasks.

When you stop, start, or reboot the container instance, then an older Amazon ECS container
agent will register a new instance, without deregistering the old or original container
instance ID. In this scenario, you will see more Amazon ECS in the container instance list.
You can verify the duplicate container instance ID and deregister it if its agent connection
status is FALSE. This issue has been fixed in the latest version of the Amazon ECS container
agent. The container instance will change its status immediately to INACTIVE if you
deregister or terminate it. When you list the container instance, it will no longer be reported,
but you can describe it for the next hour after termination. After one hour the description is
also not available.

A new task will not be placed in the container if you change the status to DRAINING. Any
service tasks that are in a running state will be removed, so that you can perform system
updates.

Amazon EC2 Container Service Chapter 9

[297]

Checking the instance role for the account
The Amazon ECS instance role will be created automatically when you run the application
for the first time. The role will be created with the name ecsInstanceRole and you can
verify it in the IAM console. If it doesn't exist, then you need to create it.

AMIs for a container instance
The Amazon Elastic Container Service (ECS) instance should contain the following:

The latest Linux distribution
The Amazon ECS container agent
The latest Docker daemon with runtime dependencies

Update notification subscribing to Amazon
ECS–optimized AMI
You can get regular updates for agent change, Docker versions, or Linux security updates
for Amazon ECS optimized AMI. You can subscribe to the Amazon SNS topic to receive
notifications such as when a new Amazon ECS-optimized AMI is available. You will get the
notifications in all the available formats that Amazon SNS supports. You can subscribe to
AMI update notifications from AWS Management Console or AWS CLI.

Your user must have IAM permissions, such as sns::subscribe, to
subscribe to an SNS topic. Also, you can subscribe to the Amazon SQS
queue for notification topics. You can trigger AWS Lambda functions
when any notifications are received.

Launching an Amazon ECS container instance
You can launch an Amazon ECS container instance from AWS Management Console, and
most of the steps are the same as when you are creating an Amazon EC2 instance. You
should change a few things or modify them to make your instance an Amazon ECS
container instance.

Once you launch this instance you can successfully run the tasks.

Amazon EC2 Container Service Chapter 9

[298]

From the AWS Management Console, you can select Launch Instance. On the Quick Start
page you can select Community AMIs and search for the amazon-ecs-optimized AMI. It
will provide you with more than 100 instances. You can select the amzn-ami-2017.09.i-
amazon-ecs-optimized latest AMI.

On the Configure Instance Details page, you can set the Number of instances field
depending on the instances you want to add into the cluster. You can select
ecsInstanceRole as the IAM role. You should provide the correct IAM permissions to
connect the Amazon ECS agent with your cluster.

You can configure your Amazon ECS container with user data. The Amazon EC2 user data
script will execute once the instance launches. This container instance launches into the
default cluster, but you can launch it in a non-default cluster, by adding the script in User
Data under Advanced Details section:

#!/bin/bash
echo ECS_CLUSTER=non_default_cluster_name >> /etc/ecs/ecs.config

If you have created an ecs.config file, then you can also specify that file from the As file
option in the User data field.

If your Amazon ECS-optimized AMI instance is from before the 2015.09.d version, then it
has a single volume, and that volume is shared by Docker and the operating system.

If your Amazon ECS-optimized AMI instance is after the 2015.09.d version, then it has two
configured volumes. The first volume is the Root volume that is used for the operating
system's use, and the other volume is the Amazon EBS volume and it will be used by
Docker.

You can view the instance status from the Instances screen. It will get a public DNS name
once the status is in the RUNNING state.

Bootstrapping container instances with Amazon
EC2 user data
You can pass user data when you launch an Amazon ECS container instance. This data will
perform some automated configuration or run the scripts, when the instance boots. The
most common use case to add a user data configuration is to pass the Docker daemon and
Amazon ECS container agent information. You can also add the cloud boot hooks, cloud-
init directives, and shell scripts.

Amazon EC2 Container Service Chapter 9

[299]

You can write a single agent configuration variable by using echo to copy the variable in
the ecs.config file. If you want to write multiple agent configuration variables, then you
can use the heredoc format by adding the lines between cat and end of the ecs.config file.

Docker daemon configuration can be specified with Amazon EC2 user data. You must write
this configuration before the Docker daemon starts.

The cloud-init package provides you with the cloud-init-per utility to create
boothook commands to run the instance at a specified frequency.

The syntax of cloud-init-per is as follows:

 cloud-init-per frequency name cmd [arg1 [arg2 [...]]

Here, frequency states how often you run the boothook. It has options such as once,
instance, or always. The name includes the semaphore file path, and cmd and arg1 are
the command and argument that bookhook should execute.

You can also combine multiple user data blocks into a single user data block called a MIME
multi-part file.

Connecting your container instance
You can perform administrative tasks on instances, such as updating or installing software
and accessing diagnostic logs by connecting to the instance using SSH. Your container
instance must meet the following pre-requisites to connect the instance using SSH:

To connect using SSH, your instance needs external network access
Your instance must launch with a valid Amazon EC2 key pair
SSH uses port 22 so you must open this port in your security group to connect
the instance

Container instances with CloudWatch Logs
You can configure container instances to send CloudWatch Logs information. You can
enable to it to get all the CloudWatch Logs from one location for all the container instances.

You must create an IAM policy that will allow container instances to use the CloudWatch
API logs. This policy must attach to the ecsInstanceRole.

Amazon EC2 Container Service Chapter 9

[300]

You can install the CloudWatch Logs agent to the container instances, after successfully
attaching the policy.

CloudWatch contains a logs agent configuration file (/ect/awslogs/awslogs.conf), that
will describe the log files to send to CloudWatch Logs. In this file, the general section
defines the common configurations. These configurations will apply to all log streams. You
can also add individual log stream sections.

The following are some common log files with their description, which are configured for
the Amazon ECS-optimized AMI:

File path Description

/var/log/dmesg Linux kernel's message buffer

/var/log/messages Global system messages

/var/log/docker Log messages for Docker daemon

/var/log/ecs/ecs-init.log Amazon ECS container initialize job log message

/var/log/ecs/ecs-agent.log Amazon ECS container agent log message

/var/log/ecs/audit.log Audit log messages from IAM roles for task

After providing the correct IAM permissions, configuration and starting the container agent
you can view and search logs from within the AWS Management Console.

A new instance launch will take a few minutes to send CloudWatch Logs
data.

Container instance draining
To perform activities, such as system/Docker daemon updates or scaling down the cluster,
you might need to remove an instance from the cluster.

By enabling container instance draining, you can remove the instance from the cluster
without impacting the existing task. Amazon ECS prevents a new task being scheduled for
placement in the container instance, when you set the instance as DRAINING.

Amazon EC2 Container Service Chapter 9

[301]

For available resources, a replacement service task will start on other container instances.
For PENDING state resources on the container, the instance will stop immediately. For
RUNNING state resources on the container, the instance will stop and replace, as per the
parameters in deployment configuration. The container instance will complete the draining
when there are no resources in the RUNNING state.

The Amazon ECS scheduler will schedule the task on the instance again, when the container
status changes from DRAINING to ACTIVE.

Remotely managing your container instance
You can remotely and securely manage the Amazon ECS container instance configuration.
Without logging in to the instance locally, you can use the Run command to perform
common administrative tasks. Across the cluster, you can simultaneously execute
commands on multiple instances to manage configuration changes. You can get status and
results of each command by executing the Run command reports.

You can perform tasks with the Run command, such as installing/uninstalling packages,
performing security updates, cleaning up Docker images, starting/stopping service, viewing
system resources/ loging files, and performing file operations.

You must attach the IAM policy that will allow the access for the Amazon EC2 System
Manager (SSM) API to ecsInstanceRole before it execute the send command with Run
commands on container instance. You have to install the SSM agent to process the Run
command's request, and configure the instance that is specified in the request. Once this
SSM agent is installed in your instance, you can use Run commands to send commands to
your container instance.

Deregistering your container instance
You can deregister your container once you finish with it. Once you deregister it, then you
are no longer able to accept the tasks. Running tasks under deregistered container will
remain running or stopping. So this task becomes orphaned and no longer monitored by
Amazon ECS.

If it might be possible that an orphaned task is still part of the Amazon ECS service, then the
service scheduler will start another copy of the same task on a different instance. Orphaned
tasks that are registered with the Application Load Balancer or Classic Load Balancer target
group are deregistered.

Amazon EC2 Container Service Chapter 9

[302]

After deregistering the container instance, it will remove the instance from
the cluster but it will not terminate the EC2 instance. You should terminate
the Amazon EC2 manually.

When you terminate a running instance from the Amazon ECS container agent, then the
agent will deregister the instance automatically. Instances with disconnected agents or
stopped container instances will not deregister automatically when terminated.

So far we have looked at container instances. Now let's look at Amazon ECS clusters.

Amazon ECS clusters
An Amazon ECS cluster is a logical group that contains tasks or services. If your task or
service uses the EC2 launch type then the cluster is a grouping of container instances. The
first time, Amazon ECS will create a default cluster for you. To keep your resources
separate, you can create multiple clusters.

We will look at the following in relation to Amazon ECS clusters:

Cluster concepts
Creating a cluster
Scaling a cluster
Deleting a cluster

Cluster concepts
Clusters are region-specific and contain tasks using Fargate or EC2 launch types
IAM policies are used to allow or restrict users from accessing your clusters
With EC2 launch type, your cluster can contain different container instance types;
this container instance type will be part of one cluster at a time

Amazon EC2 Container Service Chapter 9

[303]

Creating a cluster
You can create the cluster using AWS Management Console by performing the following
steps. If you use the EC2 launch type to launch the task, you should register your container
instance with the cluster, after creating it.

This wizard will help you to create a cluster in a simple way, with the
resources required by an Amazon ECS cluster. It will allow you to
customize common configuration options for the cluster.

To create a cluster:

Log in to the AWS and navigate to the Amazon ECS console at https:/ ​/​console.1.
aws.​amazon. ​com/ ​ecs/ ​.
Select Cluster from the left-hand side of the navigation page and choose Create2.
Cluster.
For cluster compatibility, you can select any template from the following and3.
then select Next step. All the templates are allowed to run the containerized
application:

Cluster Templates Description

Networking only Launch cluster with Fargate launch type
No need to provision/backend infrastructure

EC2 Linux + Networking Launch EC2 launch type cluster using Linux containers

EC2 Windows + Networking Launch EC2 launch type cluster using Windows containers

https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/

Amazon EC2 Container Service Chapter 9

[304]

Perform the following steps for the Networking only cluster template:

Add Cluster name on the Configure cluster page.1.
You can configure VPC for your cluster in the Networking section. It has two2.
options: you can create a cluster with default settings, or by creating a new VPC.
If you have selected to create a new VPC, then you have to add the value for the
CIDR Block and subnets.
Select Create.3.

Follow these steps for EC2 Linux + Networking or EC2 Windows + Networking templates:

Add Cluster name on the Configure cluster page.1.
You can select create an empty cluster if you want to create a cluster without any2.
resources. Select Create.

Amazon EC2 Container Service Chapter 9

[305]

Select any one option for the Provisioning model.3.
On-Demand Instance: You can pay per hour for compute capacity
without any upfront payment or long-term commitment.
Spot: You will bid for available Amazon EC2 instances and get them
up to 90% cheaper than the On-Demand price.
Note: You should avoid Spot instances for the applications that can't
interrupt.
If you have selected Spot instances then it will provide you with these
two options.

Spot Instance allocation strategy: Select a strategy from
Diversified or Lowest Price as per your needs.
Maximum bid price (per instance/hour): Mention the
bid price. Your selected instance type will launch if your
bid price is higher than the Spot price.

For EC2 instance types, select the appropriate EC2 instance type for container4.
instances.
For number of instances, enter the value for number of EC2 instances you want to5.
launch into your cluster.
For EBS storage (GiB), select the size of the Amazon EBS volume that will use to6.
store the data in your container instances. Amazon ECS-optimized AMI launches
with an 8 GB root volume and a 22 GB data volume, by default.
For a key pair, select an Amazon EC2 key pair to connect with your container7.
instances for SSH access. If you do not specify any key pair then you will not be
able to connect the container instance with SSH.
In the Networking section, you can configure the VPC to launch container8.
instances. By default, this wizard will create a new VPC with two subnets in
different Availability Zones (AZ), and a security group open to the internet on
port 80. It is a basic setup and it works well for an HTTP service. However, you
can modify existing settings in the following way. For VPC, select an existing
VPC or create a new one:

(Optional) If you create a new VPC, then for a CIDR block you can
modify the CIDR block value or you can keep as it is.
For subnets, select the subnets to use for your VPC. If you chose to
create a new VPC, you can keep the default settings, or you can modify
them to meet your needs. If you chose to use an existing VPC, select
one or more subnets in that VPC to use for your cluster.
For Security group, select the security group that you want to attach to
the container instances. If you have selected to create a new security
group, you can specify the CIDR block with port range and protocol.

Amazon EC2 Container Service Chapter 9

[306]

In the Container instance IAM role section, select the appropriate IAM
role to use the container instances. If an account has
an ecsInstanceRole that was created for you from the console first-run
wizard, then it is selected by default. You can select to create the role, if
you don't do that, you can specify another IAM role with container
instances.

The Amazon ECS Agent will not connect to the cluster without the correct
IAM permissions.

If you have selected Spot Instance under Provisioning Model earlier, then9.
the Spot Fleet IAM role section indicates that an IAM role ecsSpotFleetRole will
be created.
Select Create.10.

Scaling a cluster
In your cluster, you can scale a number of Amazon EC2 instances.

Clusters with Fargate tasks can scale using Auto Scaling.

If the cluster was created after November 24th, 2015 with console first-run
experience, then the Auto Scaling group can scale the cluster, to add or
remove the container instances.

If the cluster was created after November 24th, 2015 without console first-
run experience, then you cannot scale your cluster from Amazon ECS
console.

You can follow these steps to scale the cluster:

Log in to the AWS and navigate to the Amazon ECS console at https:/ ​/​console.1.
aws.​amazon. ​com/ ​ecs/ ​.​

Select Cluster from the left-hand side of the navigation page and select cluster to2.
scale.

https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/

Amazon EC2 Container Service Chapter 9

[307]

On the Cluster: name page, select ECS Instances:3.

If the button with Scale ECS Instances appears, then you can scale it in the next
step. If not, then you must have manually adjusted the Auto Scaling group to
scale the instances, or manually launched or terminated the instances in the
Amazon EC2 console.

Select Scale ECS Instances.4.
For Desired number of instances, enter the number of instances to scale your5.
cluster and select Scale.

If you reduce the number of container instances, then it will randomly
select the container instances to terminate until the desired count is
achieve, and any tasks running on terminated instances are stopped.

Deleting a cluster
You can delete the cluster once you have finished using it. In the Amazon ECS console,
when you delete the cluster, then associated resources will be deleted, and it also depends
on how the cluster was created.

Amazon EC2 Container Service Chapter 9

[308]

If the cluster was created after November 24th, 2015 with console first-run experience, then
the AWS CloudFormation stack, which was created with the cluster, will also be deleted
when you delete the cluster.

If the cluster was created before November 24th, 2015, then you must terminate any
container instance associated with the cluster before you delete the cluster. After the cluster
is deleted, you can delete any AWS CloudFormation resource or Auto Scaling groups,
associated with the cluster.

You can follow these steps to delete a cluster:

Log in to the AWS and navigate to the Amazon ECS console at https:/ ​/​console.1.
aws.​amazon. ​com/ ​ecs/ ​.​

Select Cluster from the left-hand side of the navigation page and select the cluster2.
to delete.

You must deregister or terminate the registered container instance in the
cluster.

Select Delete Cluster. You will see either of these confirmation prompts when3.
you delete:

Deleting the cluster also deletes the CloudFormation stack
EC2ContainerService-name_of_cluster: Deleting this cluster will clean
up the associated resources that were created with the cluster, such as
Auto Scaling groups, load balancers, or VPCs.
Deleting the cluster does not affect CloudFormation resources...:
Deleting this cluster will not clean up any resources that are associated
with the cluster that includes Auto Scaling groups, load balancers, or
VPCs. Also, you must deregister or terminate any container instances
that are registered with this cluster.

So far, we have looked at Amazon ECS clusters. Now let's look at how you can schedule
tasks on Amazon ECS.

https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/

Amazon EC2 Container Service Chapter 9

[309]

Scheduling tasks
The Amazon ECS is an optimistic concurrency system in a shared state with elastic
scheduling capabilities for containers and tasks. Amazon ECS uses Amazon ECS API's same
state information for clusters to make appropriate decisions for placement. Amazon ECS
has the ability to manually run tasks (for single run task or batch jobs) or service schedulers
(for long-running tasks), where it places the task on the cluster for you. It allows you to
define constraints and a task placement strategy, to run the task in the configuration you
have selected, such as spread out in Availability Zones. You can also integrate with third-
party or custom schedulers.

We can divide this section into the following topics:

Service scheduler
Manually running tasks
Running tasks on a cron-like schedule
Custom schedulers
Task life cycle
Task retirement

Service scheduler
The service scheduler is best suited for applications and long running services that are
stateless. It will ensure that the stated numbers of tasks are running constantly, and when
any task fails it will reschedule it. Service scheduler optionally ensures that the tasks are
registered against Amazon Elastic Load Balancer (ELB). You can update the service that the
service scheduler is maintaining, such as deploying a new task definition or changing the
number of running tasks.

By default, tasks are spread across different AZs to the service scheduler, but you can
customize these task placement decisions by configuring the task placement strategies and
constraints.

Manually running tasks
The RunTask action is best suited for batch job processes that will perform the work and
then stop. As an example, if you have a RunTask process, when the work comes into the
queue then the task pulls the work from queue, performs the desired work, and exits.

Amazon EC2 Container Service Chapter 9

[310]

You can randomly distribute tasks across the cluster by allowing the task placement
strategy using RunTask. In that case, a single instance will get the appropriate number of
tasks. You can customize the task placement strategy and constraints to use RunTask.

Manually running the task is ideal in some situations. Let's say you have developed a task
but you don't want to deploy this task with the service scheduler. If your task is a periodic
batch job or one-time job, then it is pointless to keep it running or restart it when finished.
You can use the Amazon ECS service scheduler to state the number of running tasks or
place it behind the load balancer.

Follow these steps to run the task using the Fargate launch type:

Log in to the AWS and navigate to the Amazon ECS console at https:/ ​/​console.1.
aws.​amazon. ​com/ ​ecs/ ​.
Select Task Definitions from the left-hand side of the navigation pane and2.
choose Task Definition to run:

You can select the checkbox next to the task definition to run the latest
version
You can select task definition to view earlier active revisions and select
the required revision to run

Select Actions, and Run Task:3.

Select FARGATE for Launch type and select LATEST for Platform version.4.

https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/

Amazon EC2 Container Service Chapter 9

[311]

Select Cluster to default. Add value for Number of tasks to launch. Add a name5.
for Task Group.

For Cluster VPC, select the VPC for tasks to use.6.
For Subnets, select available subnets.7.
For Security groups, a newly created security group allows HTTP traffic from the8.
internet (0.0.0.0/0). By selecting Edit, you can edit the name or the rules of the
security group, or select an existing security group.
For Auto-assign public IP, select ENABLED to provide outbound network9.
access for your task. Select DISABLED if outbound network access is not
required:

Amazon EC2 Container Service Chapter 9

[312]

(Optional) select Advanced Options to configure the command or environment10.
variable override and complete the following steps:

For Task Role Override, select IAM roles to provide permission to1.
make AWS API calls:

Roles with an Amazon EC2 Container Service Task
Role trust relationship will be shown here.

For Task Execution Role Override, select IAM roles to provide2.
permission to make AWS API calls:

Roles with an Amazon EC2 Container Service Task
Execution Role trust relationship will be shown here.

For Container Overrides, select a container to send command or3.
environment variable overrides:

For Command override: Type the override command to
send.
For Environment variable overrides: For Add Environment
Variable you can add an environment variable called Key,
and type a string value as an environment value for
the Value field:

Amazon EC2 Container Service Chapter 9

[313]

Review the task information and select Run Task.

The task moves from PENDING to STOPPED, if it disappears from the PENDING status
then there is some error in your task.

Follow these steps to run the task using the EC2 launch type:

Log in to the AWS and navigate to the Amazon ECS console at https:/ ​/​console.1.
aws.​amazon. ​com/ ​ecs/ ​.
Select Task Definitions from the left-hand side of the navigation pane and2.
choose Task Definition to run:

You can select the checkbox next to the task definition to run the latest
version
You can select task definition to view earlier active revisions and select
the required revision to run

Select Actions, Run Task.3.
Select EC2 for Launch Type.4.
Select Cluster to user. Add a value for Number of tasks to launch. Add a name5.
for Task Group.
For Cluster VPC, select a VPC for the tasks to use.6.
For Subnets, select the available subnets.7.
For Security groups, a newly created security group allows HTTP traffic from the8.
internet (0.0.0.0/0). By selecting Edit, you can edit the name or the rules of the
security group, or select an existing security group.

(Optional) For Task Placement, you can select placement strategies and constraints for your
task. You have the following options to choose from:

Placement strategy Description

AZ Balanced Spread Distribute your task across Availability Zones and container
instances

AZ Balanced BinPack Distribute your task with the least available memory across
Availability Zones and container instances

BinPack Task distribution on the least available amount of CPU or memory

One Task Per Host At least place one task on each container instance

Custom State the strategy for your own task placement

https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/

Amazon EC2 Container Service Chapter 9

[314]

(Optional) Select Advanced Options to send command or environment variables and
complete the following steps:

For Task Role Override, select IAM roles to provide permission to make AWS1.
API calls:

Roles with an Amazon EC2 Container Service Task Role trust
relationship will be shown here.

For Task Execution Role Override, select IAM roles to provide permission to2.
make AWS API calls:

Roles with an Amazon EC2 Container Service Task Execution
Role trust relationship will be shown here.

For Container Overrides, select a container to send command or environment3.
variable override:

For Command override: Type the override command to send.
For Environment variable overrides: For Add Environment Variable
you can add an environment variable called Key, and type a string
value as an environment value for the Value field.

Review the task information and select Run Task.

The task moves from PENDING to STOPPED, if it disappears from
the PENDING status then there is some error in your task.

Amazon EC2 Container Service Chapter 9

[315]

Running tasks on a cron-like schedule
You can create the CloudWatch events rule from the Amazon ECS console. This will run
one or more tasks at specified times in your cluster. You can run the task at a specific time
by setting the intervals to take backup operations or log scans.

You can set a schedule event rule at a specific interval such as a task that runs at every N
minutes, hours, or days. You can set a complicated schedule event rule by using a cron
expression.

Amazon ECS tasks can be run like cron scheduling using CloudWatch Events targets and
rules.

Scheduled tasks are not supported by task definitions that use awsvpc
network mode.

Follow these steps to create a scheduled task:

Log in to the AWS and navigate to the Amazon ECS console at https:/ ​/​console.1.
aws.​amazon. ​com/ ​ecs/ ​.
Select the Cluster in which you want to create the scheduled task.2.
On the Cluster: cluster-name page, select Scheduled Tasks, Create.3.
For Schedule rule name, enter a unique name.4.
(Optional) For Schedule rule description, state the description for the rule.5.
For Schedule rule type, select the rule type such as Run at fixed interval or cron6.
expression:

For Run at fixed interval, enter a value in the interval and select a unit
such as minutes, hours, days for the schedule.
For Cron expression, enter a value for the cron expression for the task
schedule. It contains six required fields such as Minutes, Hours, Day-
of-month, Month, Day-of-week, Year. All these are separated by
whitespace:

https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/

Amazon EC2 Container Service Chapter 9

[316]

Create one or more targets to run the Amazon ECS task when the schedule rule7.
triggers.

For Target ID, enter a unique name for target:1.
For Task definition, select family:revision from the
dropdown.
For Number of tasks, enter the number of task definitions to
run on the cluster when the rule executes.

(Optional) For Task role override, select the IAM role to use for the2.
task. Roles with an Amazon EC2 Container Service Task Role trust
relationship will show in the dropdown:

For CloudWatch Events IAM role for this target, select an
existing CloudWatch events service role or select Create new
role to create the required IAM role.
(Optional) In the Container overrides section, you can
expand a single container and override the command and
environment variable.
(Optional) select Add targets to add an additional target and
repeat the steps.

Select Create.3.

Amazon EC2 Container Service Chapter 9

[317]

Custom schedulers
To meet the business requirements or to leverage third-party schedulers, you can create
your own custom schedulers in Amazon ECS. Blox is an open source project to get more
control over your containerized applications that run on Amazon ECS. With Amazon ECS,
it will enable you to build and integrate third-party schedulers and leverage Amazon ECS
to fully manage and scale the clusters.

The custom scheduler uses StartTask API for the operation to place the task within the
cluster for specific container instances.

Custom schedulers are compatible with the tasks that use the EC2 launch
type. The StartTask API does not work for Fargate launch types for the
tasks.

Task Placement: The RunTask and CreateService actions will enable you to specify
constraints and strategies for your task placements, to customize how Amazon ECS
places the task.

Task life cycle
When a task starts, either manually or as part of a service, it passes from several states
before it finishes or stops.

Some tasks are run as batch jobs and progress from PENDING status to RUNNING status
to STOPPED status. Some tasks run indefinitely and can scale up and down.

The Amazon ECS container agent tracks the status of the task, such as the last known status
and desired status of the task.

The following is a flow chart that explains the different paths and status change, based on
the action:

Amazon EC2 Container Service Chapter 9

[318]

Task retirement
When AWS detects an irreparable failure of the hardware hosting the scheduled task, then
the task is to be retired. Or when the task reaches the schedules retirement date, then it
stops or is terminated by AWS. The task will automatically stop and the service schedule
will start a new task to replace it, if the task is part of service. You will receive a task
retirement notification email, if you are using a standalone task.

So far, we have looked at scheduling tasks. Now, let's look at Windows containers on
Amazon ECS.

Windows containers (beta)
Amazon ECS also supports Windows containers instances to launch with Amazon ECS-
optimized Windows AMI. The Amazon ECS container agent on Amazon ECS-optimized
Windows AMI runs as a service on the host, and not inside the container, because it is using
the host registry.

Amazon EC2 Container Service Chapter 9

[319]

Let's discuss the following topics in this section:

Windows container concepts
A web application with Windows containers

Windows container concepts
The following are some important things you should be aware of with Windows containers
and Amazon ECS.

Windows and Linux container instances cannot run on each other's container instances. You
should ensure that Windows and Linux tasks are placed inside separate containers.

Windows containers are currently NOT supported for Fargate launch types and
support only the EC2 launch type.
A Windows container and its instances can't support all task definition
parameters that are available for a Linux container and its instances. Some
parameters are not supported at all, or if you use them, they might behave
differently on Windows than Linux.
A Windows Server Docker image size is large, around 9 GiB, so you need more
storage space for your container instance than a Linux container instance
You should provide the IAM role for the task feature when you configure
Windows container instances. It will allow your containers to run the PowerShell
code. This task feature will use a credential proxy (occupies port 80) to provide
credentials for the container.

A web application with Windows containers
Let's walk through a web application using Windows containers that runs on Amazon ECS.
In this example, you will create a Windows container instance cluster, launch the container
instance into the cluster, register a task definition, to use a Windows container image, create
a service which will use the task definition and view the created web page when the
container runs.

Amazon EC2 Container Service Chapter 9

[320]

You can follow these steps to create a web application on a Windows instance:

Create a Windows cluster1.
Launch a Windows container instance into the cluster2.
Register a task definition for Windows3.
Create a service with the task definition4.
View the service5.

Create a Windows cluster
You can create a new cluster in a Windows container. In this application you will create
a PacktWindowsCluster cluster for a Windows container.

The following are the steps on AWS Management Console.

Log in to the AWS and navigate to the Amazon ECS console at https:/ ​/​console.1.
aws.​amazon. ​com/ ​ecs/ ​.
Select Cluster from the left-hand side of the navigation page and choose Create2.
Cluster.
Select EC2 Windows + Networking and click Next step.3.
Add Cluster name for your cluster (in this example, PacktWindowsCluster is4.
the Cluster name).
Select Create an empty cluster and then click Create:5.

https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/

Amazon EC2 Container Service Chapter 9

[321]

From AWS CLI, you can execute the create-cluster command to create a
cluster:

aws ecs create-cluster --cluster-name PacktWindowsCluster

Launch a Windows container instance into the cluster
Follow these steps to launch a Windows container instance:

Log in to the AWS and navigate to the Amazon EC2 console at https:/ ​/​console.1.
aws.​amazon. ​com/ ​ec2/ ​.
Select Launch Instance from the console dashboard.2.
In Choose an Amazon Machine Image (AMI) page, select Community AMIs.3.
Type ECS_Optimized in the Search community AMIs and press the Enter key.4.
Now Select the Windows_Server-2016-English-Full-
ECS_Optimized-2018.01.10 AMI:

On the Choose an Instance Type page, select the hardware configuration of your5.
instance. By default, the selected instance type is t2.micro.
Select Next: Configure Instance Details.6.
On the Configure Instance Details page, select Enable for Auto-assign Public7.
IP to make it accessible from the public internet. If this is selected as Disable,
then your instance will not be accessible from the internet.
Select an ecsInstanceRole IAM role value to create the container instance.8.

https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/

Amazon EC2 Container Service Chapter 9

[322]

If you don't have the correct IAM permissions to launch the container
instance, then Amazon ECS agent will be unable to connect to the cluster.

Expand the Advanced Details section and add the PowerShell script, as9.
mentioned in the following screenshot, into the User Data field. If you want to
change the cluster, from PacktWindowsCluster, you can change the name. To
enable IAM roles, you need to add –EnableTaskIAMRole for tasks:

Select Next: Add Storage.10.
On the Add Storage page, configure the storage for the container instance. It has11.
a 50 GiB default volume size for Amazon ECS-optimized Windows AMI because
an approximate 9 GiB size is for the Windows Server core base layers. You can
use more containers and images by using a large root volume size up to 200 GiB.
Select Review and Launch.12.
On the Review Instance Launch page, under Security Groups, you can see that13.
the wizard has created and selected a security group.
By default, it will come with port 3389 for RDP connectivity. You can open other14.
ports as well by editing the security group.
On the Review Instance Launch page, select Launch.15.
In the Select an existing key pair or create a new key pair dialog box, select the16.
options and when you are ready you can select the acknowledgement field and
click on Launch Instances.
You can view the instance status from the Instances screen. It will get the public17.
DNS name once the status is in a RUNNING state.

Amazon EC2 Container Service Chapter 9

[323]

It will take approximately 15 minutes for your Windows container
instance to register with the cluster.

Register a task definition for Windows
You must register a task definition before you run Windows containers in an Amazon ECS
cluster. The following example will display a web page on port 8080 for the container
instance with the microsoft/iis container image.

Follow these steps to register a task definition with the AWS Management Console.

Log in to the AWS and navigate to the Amazon ECS console at https:/ ​/​console.1.
aws.​amazon. ​com/ ​ecs/ ​.
On the Task Definitions page, select Create new Task Definition.2.
Scroll to the bottom and select Configure via JSON.3.
Replace the pre-populate JSON code with the following task definition JSON4.
code in the text area and select Save:

{
 "family": "packt-windows",
 "containerDefinitions": [
 {
 "name": "packt_simple_app",
 "image": "microsoft/iis",
 "cpu": 100,
 "entryPoint":["powershell", "-Command"],
 "command":["New-Item -Path
C:\\inetpub\\wwwroot\\index.html -Type file -Value '<html> <head>
<title>Welcome to Packt!!!</title> </head><body> <div style=text-
align:center> <h1>Welcome to Packt!!!</h1><p>You have successfully
created application in Amazon ECS Container.</p></body></html>';
C:\\ServiceMonitor.exe w3svc"],
 "portMappings": [
 {
 "protocol": "tcp",
 "containerPort": 80,
 "hostPort": 8080
 }
],
 "memory": 500,
 "essential": true
 }

https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/

Amazon EC2 Container Service Chapter 9

[324]

]
}

Verify the information and click Create.5.

Follow these steps to register the task definition with the AWS CLI.

Create a packt-windows.json file.1.
Open the file in a text editor and add the JSON code stated previously in the file2.
and save it.
Using the AWS CLI, run the register-task-definition command to register3.
the task definition with Amazon ECS.

Ensure that the AWS CLI and Windows clusters are using the same region
or add the --region cluster_region option in to the command, aws
ecs register-task-definition --cli-input-json
file://packt-windows.json.

Create a service with the task definition
Once the task definition has been registered, you can place the task in the cluster. You can
create a service with the task definition and place one task in the cluster:

Using AWS Management Console:
On the Task Definition: packt-windows registration confirmation1.
page, select Actions, Create Service.
On the Create Service page, enter the following information and then2.
choose Create service:

Cluster: PacktWindowsCluster
Number of tasks: 1
Service name: PacktWindowsService

Using the AWS CLI:

Run the following command to create your service:

aws ecs create-service --cluster PacktWindowsCluster --task-
definition packt-windows --desired-count 1 --service-name
PacktWindowsService

Amazon EC2 Container Service Chapter 9

[325]

View the service
Once the service launchs a task into the cluster, you can view the service and open the web
application in the browser.

It will take upto 15 minutes for your instance to download and extract the
Windows container base layers.

Follow these steps to view the service:

Log in to the AWS and navigate to the Amazon ECS console at https:/ ​/​console.1.
aws.​amazon. ​com/ ​ecs/ ​.
Select Cluster from the left-side navigation page and select2.
PacktWindowsCluster.
In the Services tab, select the PacktWindowsService service.3.
On the Service: PacktWindowsService page, select the task ID for the task in the4.
service.
On the Task page, expand the container to view its information.5.
In the Network bindings of the container, select the External Link with the IP6.
address and port and open it. It will show you the web application:

So far, we have looked at Windows containers. Now, let's look at how to monitor and
optimize the cost of the infrastructure on Amazon ECS.

https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/

Amazon EC2 Container Service Chapter 9

[326]

Monitoring and optimizing the cost of the
infrastructure
The following are some of the benefits of using ECS:

Lower AWS bills by switching from EC2 to ECS:
Better resource utilization: Docker allows you to improve resource
utilization on EC2 by running instance on more than a single
service. You can use two or multiple services on a single instance
type.
Spot by default: If you use the Spot fleets in your cluster, then it
has a lower risk and lower cost of instance turnover. Docker allows
you to take advantage of diversity because containers don't care
about the machine size on which they run. Containers are fast to
start and stop which allows you to save costs on a spot price.
Centralized EC2 cost management: Running the ECS service with
the correct reservations on the cluster helps to make EC2 cost-
optimized. Also, centralizing control of EC2 makes it much easier
to manage.

Better security and credentials management:
You have to manage logging, security infrastructure, and metrics
on every single EC2 instance. With ECS, you can provision the
cluster and all the systems are consolidated, so if any logging
credentials are compromised, you will rotate the credentials at a
single place.

Consistency across teams and services:

With ECS and Docker, you don't need to know different things
about server instance to work on. It means you can work effectively
and share knowledge across other resources in a team for better
application.

Amazon EC2 Container Service Chapter 9

[327]

Less environment confusion:

To understand the EC2 environment is a bit confusing, if the
developers don't know where to look. Use of Docker for developers
is more explicit for the runtime environment and least dependent
on another system. In Docker, your code will run locally but much
closer to production. It will help you to find issues easily without
spending time on different stages of the process or iterations.

So far, we have looked at monitoring and optimizing the cost of infrastructure on Amazon
ECS. Now, let's understand Continuous Integration and Continuous Deployment Workflow
using Amazon ECS.

Continuous Integration (CI) and Continuous
Deployment (CD) Workflow
In this tutorial, we will create an end-to-end Continuous Integration (CI) and Continuous
Deployment (CD) pipeline, using AWS CodePipeline and Amazon ECS.

Before you start this tutorial, you must have a few resources available to create the CD
pipeline. We have mostly covered all the resources in the previous sections.

You should create all the required resources within the same AWS Region.

The prerequisites are as follows:

A source control repository: AWS CodeCommit is used with Dockerfile and an
application source in this tutorial
A Docker image repository: Amazon ECR is used containing an image that will
be built from Dockerfile and an application source
An Amazon ECS task definition: To refer the Docker image that is hosted in
image repository
An Amazon ECS cluster: To run a task definition service

Once you have finished with the prerequisites, then proceed with the tutorial to create the
AWS CodePipeline.

Amazon EC2 Container Service Chapter 9

[328]

Step 1 – addding required files source repository
AWS CodeBuild will build a Docker image and push it to the Amazon ECR. Create
buildspec.yml and add this file to the repository that tells AWS CodeBuild about how to
build.

Build specification files contain the following stages:

Pre-build stage:
Log in to Amazon ECR.
Set repository URI for Amazon ECR image. Add image tag with
the first seven characters of Git commit ID.

Build stage:
Build Docker image. Tag image as the latest and with the Git
commit ID.

Post-build stage:
You can push the image to the Amazon ECR repository with both
the tags.
Create a file PacktECS.json that contains the Amazon ECS
container name and its image and tag. In the deployment stage, the
CD pipeline will use this information to create the task definition's
new revision and then update the service to use it for the new task
definition. AWS CodeDeploy ECS job worker requires this
PacktECS.json file:

version: 0.2

phases:
 pre_build:
 commands:
 - echo Logging in to Amazon ECR...
 - aws --version
 - $(aws ecr get-login --region $AWS_DEFAULT_REGION --no-
include-email)
 - REPOSITORY_URI=012345654321.dkr.ecr.us-
east-1.amazonaws.com/packt-demo
 - IMAGE_TAG=$(echo $CODEBUILD_RESOLVED_SOURCE_VERSION | cut
-c 1-7)
 build:
 commands:
 - echo Build started on `date`
 - echo Building the Docker image...
 - docker build -t $REPOSITORY_URI:latest .

Amazon EC2 Container Service Chapter 9

[329]

 - docker tag $REPOSITORY_URI:latest
$REPOSITORY_URI:$IMAGE_TAG
 post_build:
 commands:
 - echo Build completed on `date`
 - echo Pushing the Docker images...
 - docker push $REPOSITORY_URI:latest
 - docker push $REPOSITORY_URI:$IMAGE_TAG
 - echo Writing image definitions file...
 - printf '[{"name":"packt-demo","imageUri":"%s"}]'
$REPOSITORY_URI:$IMAGE_TAG > PacktECS.json
artifacts:
 files: PacktECS.json

The build specification was written for the following task definition, used by the Amazon
ECS service for this tutorial. The REPOSITORY_URI value corresponds to the image
repository (without any image tag), and the packt-demo value near the end of the file
corresponds to the container name in the service's task definition:

{
 "taskDefinition": {
 "family": "packt-demo",
 "containerDefinitions": [
 {
 "name": "packt-demo",
 "image": "012345654321.dkr.ecr.us-east-1.amazonaws.com/packt-
demo",
 "cpu": 100,
 "portMappings": [
 {
 "protocol": "tcp",
 "containerPort": 80,
 "hostPort": 80
 }
],
 "memory": 128,
 "essential": true
 }
]
 }
}

Amazon EC2 Container Service Chapter 9

[330]

Follow these steps to add the buildspec.yml file to the source repository.

Write the preceding build specification code into the new file.1.
Change the value for REPOSITORY_URI (012345654321.dkr.ecr.us-2.
east-1.amazonaws.com/packt-demo) with your Amazon ECR repository URI for
the Docker image.
Change the value for packt-demo to your container name.3.
Add, commit, and push the buildspec.yml file to the source repository.4.

Add files to the repository:1.

git add .

Commit the change with specific comments.2.

git commit –m "Add comment here."

Push the code that was committed.3.

Step 2 – creating a Continuous Deployment
pipeline
Using AWS CodePipeline wizard, you can create different stages for pipelines and connect
with a source code repository for your Amazon ECS service:

Follow these steps to create your pipeline:

Log in to the AWS and navigate to the AWS CodePipeline console at https:/ ​/1.
console. ​aws. ​amazon. ​com/ ​codepipeline/ ​.
Select Create pipeline on Welcome.2.
On the Step 1: Name page, enter Pipeline name, for the pipeline and select Next3.
step.
On the Step 2: Source page, for Source provider, select AWS CodeCommit:4.

For Repository name, select the AWS CodeCommit repository where1.
your source is located for the pipeline.
For Branch name, select the branch to use and click Next step.2.

https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/

Amazon EC2 Container Service Chapter 9

[331]

On the Step 3: Build page, select AWS CodeBuild, and then select Create a new5.
build project.
For Project name, enter a unique name for build project.6.
For Operating system, select Ubuntu.7.
For Runtime, select Docker.8.
For Version, select aws/codebuild/docker:17.09.0.9.
Select Save build project.10.
Select Next step.11.

The wizard will create the service role for an AWS CodeBuild,
called code-build-project-name-service-role. You need to update
this service role to add Amazon ECR permissions.

Amazon EC2 Container Service Chapter 9

[332]

On the Step 4: Deploy page, select Amazon ECS as Deployment provider.12.
For Cluster name, select the Amazon ECS cluster where your service is1.
running.
For Service name, select your existing service.2.

Amazon EC2 Container Service Chapter 9

[333]

For Image filename, specify your JSON filename and then select Next3.
step:

Amazon EC2 Container Service Chapter 9

[334]

On the Step 5: Service Role page, select from the existing role or Create role and13.
select Next step.
On the Step 6: Review page, review the pipeline configuration and select Create14.
pipeline.

Once the pipeline has been created, then it will pass through different
stages. The IAM role for AWS CodeBuild doesn't have permission to
execute some commands mentioned in buildspec.yml, so the build will
fail. In the next section, you will add the required permissions for Amazon
ECR.

Step 3 – adding Amazon ECR permissions to the
AWS CodeBuild role
Now in the previous section, you have created the CodePipeline using the AWS
CodePipeline wizard including the IAM role for the AWS CodeBuild project such as code-
build-project-name-service-role. But the build failed because the buildspec.yml
file is going to call the Amazon ECR API and it doesn't have permission to make these calls.
So, you must attach the appropriate permissions to AWS CodeBuild. In this case, you have
to attach the AmazonEC2ContainerRegistryPowerUser policy to your code-build-
project-name-service-role.

Step 4 – testing your pipeline
Now your pipeline is ready to run end-to-end native AWS Continuous Integration and
Continuous Deployment. You can test the functionality by pushing the code change into the
repository.

Amazon EC2 Container Service Chapter 9

[335]

The following screenshot shows AWS CodeCommit, AWS CodeBuild, and Amazon ECS
operations:

Amazon EC2 Container Service Chapter 9

[336]

Summary
So far, we have looked at Docker, container instances, clusters, scheduling tasks, and
Windows containers. Finally, we deployed an example of a CI/CD application with
Amazon EC2 Container Services.

In the next chapter, we will discuss the Microservices Architecture, Lambda and
Lambda@Edge advanced topics, the Serverless Application Model (SAM) and the
Serverless Application Framework.

10
Amazon Lambda – AWS

Serverless Architecture
Bingo! You have reached the last chapter. I hope you have enjoyed what has been
mentioned about AWS and thought that it was quite an interesting journey to complete all
the previous chapters. But still, the excitement is not over yet. In the previous chapter, we
discussed Docker, container instances, clusters, scheduling tasks, and Windows containers.
We also learned about Elastic Load Balancing (ELB), Auto Scaling, fault tolerance, and
monitoring and optimizing infrastructure costs. We also modified AWS CodeDeploy for
CI/CD applications with Auto Scaling.

The excitement starts here, because we will learn about the Serverless Framework, as many
companies are interested to see how it affects their existing system or how they can
integrate serverless architecture with their existing applications to get the benefit of it.

In this chapter, we will discuss more about microservices, the Serverless Framework, how
you can achieve serverless on the AWS platform using AWS Lambda, and how you can
deploy the applications with the AWS Serverless Application Model (SAM). We will also
learn how to use CI and CD on the Serverless Framework.

In this chapter, we will cover the following topics:

Microservices architecture, Lambda, and Lambda@Edge advanced topics and
best practices
Deploying with AWS SAM and AWS CloudFormation
Introducing the Serverless Application Framework
Monitoring and optimizing the cost of the infrastructure
CI and CD workflow

Now, let's start with our first topic, microservices architecture, followed by the Lambda and
Lambda@Edge advanced topics, and the best practices.

Amazon Lambda – AWS Serverless Architecture Chapter 10

[338]

Microservices architecture
A microservice is a method used to develop a scalable software system that will support
any kind of device. It is an easily and independently deployable modular service that will
run a unique process, and communicates through a lightweight mechanism to fulfill
business requirements.

To understand microservices architecture, you need to understand what a monolithic
architecture style is and why we need microservices. In a monolithic architecture, an
application is created with tightly coupled modules as single units and is deployed on the
web or an application. If you want to modify or scale the application, then you need to
build and deploy an entire application or scale the whole application, instead of specific
components. In this case, microservices can help you.

The following diagram shows the difference between monolithic and microservices
architecture:

Amazon Lambda – AWS Serverless Architecture Chapter 10

[339]

Microservice characteristics
The following are the characteristics of microservices:

A microservice can break down your software into multiple service components,
and all these services can be easily deployed, modified, and redeployed
independently, without affecting application integrity. In this case, you will
deploy only the necessary services and not the whole application.
A microservice is organized around business priorities and capabilities, and
utilizes cross-functional teams. Every team is responsible for developing one or
more services for specific products, based on requirements. If any changes are
required, then a specific product team is responsible for making these changes.
A microservice has smart endpoints, which help to process information, apply
business logic, and pass it to the flows. This means it receive requests, processes
them, and then generates the response accordingly.
A microservice involves different kinds of platforms and technologies. It is
favored for decentralized governance since developers can use existing code
libraries or use different technologies to develop the application. It is also favored
to do decentralized data management by assigning a unique database to each
service.
A microservice is designed to cover failures. Different services communicate with
each other, and a service could fail at any stage for any reason. In this case, its
neighboring service will take over for that service, and the failed service will stop
in a graceful manner if possible.

It depends on your business requirements whether you use microservices in your project.
Look at the following pros and cons.

The pros of microservices are as follows:

Microservices can be developed by a small team.
Developers have the freedom to develop and deploy services independently.
Different services can be written in different programming languages.
They can be integrated easily and deployed automatically by using open source
tools.
Developers develop the code as per business requirements and can use the latest
technologies if they wish.
Developers can easily understand and modify the services, which helps
newcomers become productive quickly.

Amazon Lambda – AWS Serverless Architecture Chapter 10

[340]

Deployment is much faster because web containers can start quickly.
There is no need to modify the whole application and redeploy it. If changes are
required in certain services, you can modify that service and deploy it.
If one service fails, the other service will continue to work, so it will not impact on
the entire system.
You can integrate it with other third-party services and scale it easily.
There is no long-term commitment for the technology stack.

The cons of microservices are as follows:

Testing is tedious and complicated because of distributed deployment
Developers have to mitigate network latency, fault tolerance, load balancing, and
different message formats, adding more complexity
There might be some duplication effort since it is a distributed system
Management and integration become complicated as whole products when
services are increasing
Developers need to put in extra effort when implementing the mechanism for
communication between services
There are a number of information barriers when the number of services is
increasing

So far, we have completed microservices architecture. Now, let's understand advanced
topics and best practices concerning AWS Lambda and AWS Lambda@Edge.

Lambda and Lambda@Edge advanced
topics and best practices
In Chapter 7, Evaluating the Best Architecture, we learnt about AWS Lambda basics. Here,
we will discuss advanced topics and best practices about AWS Lambda and AWS
Lambda@Edge.

The following sections provide advanced features to build Lambda applications:

Environment variables
Dead letter queues (DLQ)

Amazon Lambda – AWS Serverless Architecture Chapter 10

[341]

Environment variables
Environment variables are key-value pairs. You can create and modify them from function
configuration using the AWS Lambda Management Console, AWS Lambda CLI, or AWS
Lambda SDK. For key-value pairs, AWS Lambda makes these available from the Lambda
function code, which is using standard APIs. These APIs can support any language, such as
Node.js functions, which is using process.env.

Lambda functions enable environment variables to pass settings dynamically to the libraries
and function code without any code being changed. Libraries can use environment
variables to know which directory to install files to, where to store connection and outputs,
logging settings, and much more. You can separate application logic from these settings. It
also helps to change the function behavior for different settings without updating the
function code.

Setting up
If you want, your Lambda function can have different configurations or settings when it
moves from different life cycle states like from development to test to production. For
example, development, test, and production environments, which contain databases and
functions needed to connect to the database. All of these have different environments and
so they have different connection information. In this case, you can create the environment
variables, reference it for the database name, DB connection information, and in which stage
like development, test, and production that function is executing in without any code
change. Using AWS console, you can modify and configure environment variables.

Here, you are configuring the variable for the development stage function:

Amazon Lambda – AWS Serverless Architecture Chapter 10

[342]

In the following screenshot, you are configuring the variable for the test stage
function:

Here, you are configuring the variable for the production stage function:

Using the AWS CLI, you can create a Lambda function with an environment variable. Using
AWS CloudFormation, you can create and update a function with environment variables. It
can also be used when you configure settings that are language-specific or where your
function will include the library.

Amazon Lambda – AWS Serverless Architecture Chapter 10

[343]

For example, you can set PATH for the directory where all executables will be stored, which
includes runtime-specific variables such as NODE_PATH for Node.js or PYTHONPATH for
Python.

In the following example, we will create a Lambda function, HiPacktFunction, and set
the LIBRARY_PATH environment variable, which will specify the directory where it will
load shared libraries at runtime. You have provided the path for the shared library, which is
the /usr/bin/packtFunction/lib64 directory. The runtime parameter is using
python3.6:

aws lambda create-function --region us-east-1 --function-name
HiPacktFunction --zip-file fileb://hi_packt.zip --role
arn:aws:iam::499651321398:role/service-role/LambdaRole --environment
Variables="{LIBRARY_PATH=/usr/bin/packtFunction/lib64}" --handler
hi_packt.my_handler --runtime python3.6 --timeout 15 --memory-size 512

The output of running the preceding code can be shown as follows:

Amazon Lambda – AWS Serverless Architecture Chapter 10

[344]

You can verify the created function in the AWS console, and see the generated function
with the environment variable:

Naming convention rules for environment variables
You can create a number of environment variables, and the total size of the set can be no
more than 4 KB. The name must start with any letters from [a-zA-Z], and can contain
alphanumeric characters and underscores, such as [a-zA-Z0-9_].

In addition to that, AWS Lambda reserves some specific sets of keys. You will receive an
error message if you try to set values for any of the reserved keys.

Environment variables and function versioning
In AWS Lambda, you can enable version provisioning for your functions to manage and
publish different versions for different stages such as development to test to production. For
each version of Lambda functions, you have different environment variables for different
stages, and these environment variables are also saved as snapshots of that version; they
cannot changed.

If requirements change, then you can create a new version of the Lambda function.
Updating environment variables is done to create new versions to meet requirements. Then,
you can publish the new version. The function's current version should be marked
as $LATEST:

Amazon Lambda – AWS Serverless Architecture Chapter 10

[345]

You can also contain aliases to point to a particular version in your function. Aliases
provide the advantage to roll back to a previous version of your function, and you will
point out the aliases for that version. They also contain the same environment variables
required for that version:

Environment variable encryption
AWS Lambda uses AWS Key Management Service (KMS) to encrypt the environment
variables. When you invoke the Lambda function, these values will be decrypted and
available in the Lambda code. When you create or update your first Lambda function in a
region that uses environment variables, then it will create the default service key
automatically within AWS KMS. This key will encrypt the environment variables.

Amazon Lambda – AWS Serverless Architecture Chapter 10

[346]

It is recommended to use encryption when you are storing sensitive
information in your environment variable.

You can also add the AWS KMS key after the Lambda function is created, but in that case
you cannot select the default key. If this is the case, you will get billed when you use your
own key, but not billed if you use the default service key. No additional IAM permissions
are required to use the default KMS service key for Lambda. You have to add
kms:Decryptto in your role to use the custom KMS key. Also, users must require
permission to create and update the Lambda function in order to use the KMS key.

On the client side, you cannot encrypt sensitive information using the
default Lambda service key.

As shown in the following image, you can enable the encryption configuration for your
environment variables:

Amazon Lambda – AWS Serverless Architecture Chapter 10

[347]

Error scenarios
There are a few error scenarios that can occur when you use environment variables, which
are as follows:

You get a configuration error for the create or update operation when the
function configuration exceeds 4 KB, or when you use a reserved key as an
environment variable key provided by AWS Lambda.
It might be possible that the encryption or decryption of an environment variable
fails during execution.
Due to AWS KMS service exceptions, AWS Lambda is unable to decrypt
environment variables. In this case, AWS KMS will return an error message with
the error conditions. It will log in to log-stream in Amazon CloudWatch.
You get the following error message when you access the environment variables
using a disabled AWS KMS key:

Lambda was unable to configure access to your environment variables
because the KMS key used is disabled.
 Please check your KMS key settings.

Dead letter queues (DLQ)
A failed Lambda function invokes asynchronously by default. It is retired twice. Then, the
Lambda function event is discarded. AWS Lambda gets an indication to use DLQ for the
unprocessed events. These unprocessed events send you to an Amazon SNS topic or an
Amazon SQS queue where you will take further action.

You can configure DLQ by mentioning a target Amazon Resource Name (ARN) in
the DeadLetterConfig parameter in the Lambda function for the Amazon SQS queue or
Amazon SNS topic where the event payload will be delivered. Functions without any
association with DLQ discard those events after exhausting their retries.

To access your DLQ resources, you need to provide explicitly receive and/or delete and/or
sendMessage roles as part of the execution role for the Lambda function. The payload
written to the DLQ target ARN is the original payload without any modifications to the
message body.

Amazon Lambda – AWS Serverless Architecture Chapter 10

[348]

Attributes of the message contain the following information so that you can understand
why the event wasn't process:

Name Type Value

RequestID String Unique request identifier

ErrorCode Number HTTP error code in a three-digit format

ErrorMessage String Error message truncated to 1 KB

If the event payload consistently fails for some reason, for example, to reach the target
ARN, then Lambda will call DeadLetterErrors to increment the CloudWatch metric and
delete that event payload.

Best practices for working with AWS
Lambda functions
The following are the recommended best practices for using AWS Lambda:

Function code
The following are the best practices for function code:

You can separate your entry point or Lambda handler logic into core logic to
create more unit-testable functions.
You can improve the performance of your function code by taking advantage of
externalized configurations or dependencies for the code, so that you can retrieve
the referenced code and store it locally after its initial execution. You can limit the
re-initialization of objects and/or variables on every invocation. Reuse the existing
connections and keep the previous connections alive, which were established
during previous invocations.
To pass operational parameters, you can use environment variables for your
functions. Let's say you want to use the Amazon S3 bucket name in your
function. You can pass this value as an environment variable instead of hard-
coding the bucket name.

Amazon Lambda – AWS Serverless Architecture Chapter 10

[349]

You can control the dependencies in a function's deployment package. If you are
using libraries in your function, and if these libraries are updated with some set
of latest features and security updates, it is recommended to package all your
dependencies within the same deployment package.
You can reduce the time it takes to download the deployment package and
unpack it before invocation. Avoid uploading the entire AWS SDK functions that
have been written in .NET core or Java. Instead, you can select the dependent
modules that your SDK needs.
You can reduce the time it takes to unpack the deployment package. For example,
you can put your dependency .jar file in a separate lib directory for Java
functions instead of putting all your code in a single .jar file with all the
required .class files.
For your dependencies, you can minimize complexity by using simple
frameworks so that they load quickly.
You should avoid using recursive code.

Function configuration
The following are the best practices for function configuration:

You should do performance testing for Lambda functions by picking the
optimum memory size configurations. A memory size increase will trigger an
equivalent CPU increase in your function. You can determine the memory usage
by viewing the AWS CloudWatch logs. In the logs, you can analyze the
maximum memory used and determine if it has been over-provisioned or it
needs more memory.
You should do load testing to determine the optimum timeout value. It will help
you analyze how long the function will run to determine the dependency service.
It is also important that your Lambda function makes network calls to the
resources that might not handle Lambda scaling.
You can set the IAM policies for restrictive permissions.
You should be familiar with all the required AWS Lambda limits.
You should delete the Lambda functions that are no longer needed or unused, so
unnecessarily increase the deployment package size.

Amazon Lambda – AWS Serverless Architecture Chapter 10

[350]

Alarming and metrics
The following are the best practices for Alarming and Metrics:

You can use Amazon CloudWatch alarms and AWS Lambda metrics instead of
using the alarms and metrics in Lambda function code. You can catch the issues
in the early stage of the development process. You can set up and configure an
alarm based on your expected time to run a Lambda function execution.
You can leverage AWS Lambda metrics and dimensions, as well as the logging
directory, to catch any app errors.

Stream event invokes
The following are the best practices for stream event invocations:

For the stream processing function, you can test your code with different sizes of
batches and records so that you get to know how quickly your function will
complete a specific task. If there are not enough records, then the stream
processing function will process a lesser number of records instead of waiting.
By adding extra shards, you can increase your Kinesis stream processing
throughputs. In Kinesis, if you have 100 active shards, then you have to invoke at
least 100 Lambda functions to increase the processing throughput.
To know whether your Kinesis stream is processed or not, you can use Amazon
CloudWatch on IteratorAge. You can configure Amazon CloudWatch alarm
settings by a maximum of 30 seconds.

Async invokes
To address the async functions errors, you can create and use a Dead Letter Queue (DLQ).

Lambda VPC
The following are the best practices for Lambda VPC:

From the following diagram, you can decide whether to use the Virtual Private
Cloud (VPC) or not:

Amazon Lambda – AWS Serverless Architecture Chapter 10

[351]

Lambda will create an Elastic Network Interface (ENI) in the VPC to access the
internal resources.
You can request to increase the ENI capacity if you don't have enough capacity.
You can request to create a large subnet if you don't have enough IP addresses.
In your VPC, you can create dedicated Lambda subnets. You can create a custom
route table for NAT gateway traffic without changing your existing subnets. It
will create a dedicated address space for Lambda and it will not share the
resources with others.

Amazon Lambda – AWS Serverless Architecture Chapter 10

[352]

Lambda@Edge
AWS Lambda@Edge allows you to easily run code across different AWS locations globally.
It will provide low latency to the end user. Your AWS Lambda function can be triggered by
Amazon CloudFront events, such as content requested to or from origin servers and
viewers. AWS Lambda will take care of all the necessary actions such as replication,
routing, and scaling the code with high availability at different AWS locations close to the
end user when you upload the code to AWS Lambda.

There is no charge when the code is ideal, and you will pay for the compute time your
function consumes.

Lambda@Edge benefits
The benefits of Lambda@Edge are as follows:

Lambda@Edge runs the function code at different AWS locations close to the end
user to provide low latency with rich and more personalized contents.
Lambda@Edge scales the applications automatically by running code in response
to each Amazon CloudFront event trigger. Your function code processes each
trigger individually, runs in parallel, and scales precisely with the workload.
Lambda@Edge runs code automatically without provisioning or managing
servers for different AWS locations. You will write the code, upload to AWS
Lambda, and then the code will run close to the end user's locations.
Lambda@Edge charges you every 50 ms for executing the code, but this also
depends on the number of times it is triggered. You will pay nothing when your
code is ideal.

So far, we have completed advanced topics and best practices for AWS Lambda and AWS
Lambda@Edge. In the next section, we will discuss AWS Serverless Application Model
(SAM). You will also deploy applications using AWS SAM and AWS CloudFormation.

Amazon Lambda – AWS Serverless Architecture Chapter 10

[353]

AWS Serverless Application Model (SAM)
Serverless applications can be defined by AWS SAM. Previously, it was known as project
flourish. Natively, AWS SAM is supported by AWS CloudFormation. It expresses resources
for serverless applications with simple syntax. AWS SAM with AWS CloudFormation can
define AWS Lambda functions, APIs, and Amazon DynamoDB tables, which are needed by
a serverless application in a simple way. With CloudFormation templates, you can define
serverless resources with a few lines of code. Two new commands have also been
introduced to AWS CloudFormation CLI that will simplify packaging serverless
applications and deploying with AWS CloudFormation.

To deploy the application, you need to specify the resources, along with the permission
policy in the AWS CloudFormation template file, which is written in YAML or JSON, a
package that deploys artifacts, and finally, deploys the templates. A SAM file or template is
referred by the AWS SAM model as an AWS CloudFormation template with serverless
resources.

The following is an example that defines how you can leverage AWS SAM to declare
components for serverless applications:

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Resources:

 Your_Function_Name:
 Type: AWS::Serverless::Function
 Properties:
 Handler: index.handler
 Runtime: runtime
 CodeUri: s3://your_s3_bucket_name/your_packaged_code.zip

Handler: When the Lambda function is invoked, it will execute the code.
index: The name of the file in the handler that is containing the code. You can
mention as many function you want in your serverless application.

You can also mention the environment variables that we have discussed in previous
sections.

You can add the resources into the AWS CloudFormation template, but
this is not supported by the current SAM model.

Amazon Lambda – AWS Serverless Architecture Chapter 10

[354]

Deploying with AWS SAM and AWS
CloudFormation
In this section, we will create a simple serverless application, which consists of a single
function. It will return Amazon S3 bucket name that is specified as an environment
variable.

Create the index.js file with the following code:

var AWS = require('aws-sdk');

exports.handler = function(event, context, callback) {
 var bucketName = process.env.S3_BUCKET;
 callback(null, bucketName);
}

Create the packt.yaml file with the following code:

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Resources:
 PacktFunction:
 Type: AWS::Serverless::Function
 Properties:
 Handler: index.handler
 Runtime: nodejs6.10
 Environment:
 Variables:
 S3_BUCKET: packtdemo

Create the packt_app folder and add the index.js and packt.yaml files into that folder.
Now, you can package the packt_app folder for the serverless application.

Packaging and deployment
Once you create the index.js file, which is a package handler, and the packt.yaml file,
you need to package and deploy them. You can use the AWS CLI for the packaging and
deployment of this serverless application.

Packaging
You can use your existing Amazon S3 bucket or create a new bucket to package the
application. Execute the package command to upload the deployment package to S3.

Amazon Lambda – AWS Serverless Architecture Chapter 10

[355]

Execute the following command to create an Amazon S3 bucket in your specified region:

aws s3 mb s3://bucket-name --region region

You can execute the following command on the command prompt to create the packaged
artifacts. It will return the command for deployment once it is successfully packaged:

aws cloudformation package --template-file packt.yaml --output-template-
file serverless-output.yaml --s3-bucket packtdemo

The output of running the preceding command is as follows:

It will create the package under the specified Amazon S3 bucket and provide the command
for deployment:

Amazon Lambda – AWS Serverless Architecture Chapter 10

[356]

This command will generate a template file for AWS SAM. This package command will
generate an AWS SAM template file. We have specified the serverless-output.yaml file
in the previous command with the output-template-file attributes. This template file
also contains CodeUri. CodeUri specifies the path where the deployment file is stored in
the S3 bucket.

This template file is a serverless application. It is now ready for deployment:

Deployment
The application will be deployed by executing the following command:

aws cloudformation deploy --template-file serverless-output.yaml --stack-
name PacktFunction --capabilities CAPABILITY_IAM

Amazon Lambda – AWS Serverless Architecture Chapter 10

[357]

The screenshot of running the preceding command is shown as follows:

You can specify the --capabilities parameter with your deployment command to create
a role for AWS CloudFormation. In the template file, the type is created with
the AWS::Serverless::Function resource. It will create the role that is used to execute
the Lambda function. You can execute the aws cloudformation command to create a
ChangeSet for AWS CloudFormation. It contains a change list in the AWS CloudFormation
stack and deploys it later.

You can verify your newly created stack by opening the AWS CloudFormation console:

Amazon Lambda – AWS Serverless Architecture Chapter 10

[358]

You can verify your Lambda function by opening the AWS Lambda console:

So far, we have talked about SAM and deployed the application using AWS SAM and AWS
CloudFormation. In the next section, we will learn about the Serverless Application
Framework.

Introducing the Serverless Application
Framework
Serverless architecture means that as a developer, you will focus on the code and won't
bother with the servers. Servers will be somewhere. As a developer, you will focus on
building an application that can handle production ready traffic. You don't have to
provision and manage the servers and scale your application. You will not pay for unused
resources.

This technology is still in its early stages, although many developers have already
implemented it and launch their applications rapidly with lesser costs.

What makes an application serverless?
The serverless movement was started with the release of AWS Lambda. AWS Lambda is
a Function-as-a-Service (FaaS) compute service, but serverless is far more than FaaS.
Serverless focuses on your efforts to provide value to users. This means using the managed
service for databases, including the search index, queue, email delivery, and SMS
messaging. You can tie these services using stateless and ephemeral computes.

Amazon Lambda – AWS Serverless Architecture Chapter 10

[359]

If you upgrade your Linux server or manage the RabbitMQ server, it will not provide any
value to the user, but if you add some new features for your shipping products, this will
provide value to users. The Serverless Framework suggests that you can focus on your
business logic and everything else will be taken care by them.

Serverless applications benefits
You should know about the core benefits offered by serverless applications:

No administration: You will deploy your code without any provisioning or
managing. You don't need to worry about the concepts of fleet, instance, or the
operating system. There is also no need for the Ops department.
Auto-scale: As a developer, you need to fire alerts or write scripts to scale the
servers up and down. The serverless service provider manages this scaling
activity.
Pay-per-use: You will pay for what you used for FaaS compute and not for the
pre-provisioned capacity. You will not pay for a single penny for the idle time,
any resource that you haven't used, and if you haven't completed resource
utilization. It will cut down the cost by 90%.
Increased velocity: You can reduce the time from idea, to implementation, to
deployment to production, since you have less provisions upfront, which are
managed after deployment. In this case, a small team can deliver more features.

The Serverless Framework
The serverless application is in cloud native development and it requires automation. Since
you have multiple managed services and functions, you cannot rely on a manual process.
You should be able to create applications with a command. This is the reason that the
Serverless Framework comes into the picture. You can build and deploy an application on
any cloud provider with a consistent experience using the Serverless Framework CLI.

Based on the language you have used in your application and the cloud provider you have
used for deployment, this Serverless Framework will automatically identify cloud vendor
settings for you. Previously, we have discussed serverless application benefits. Now, we
will discuss Serverless Framework benefits.

Amazon Lambda – AWS Serverless Architecture Chapter 10

[360]

Serverless Framework benefits
You should know about the core benefits offered by the Serverless Framework:

Development speed increased: With the Serverless Framework CLI, developers
can build, test, and deploy the application in the same environment. Developers
will write their functions using YAML, and the deployment of a service can be
done using a single command. Practically, your code will be deployed to multiple
providers with different deployment versions, and can be rolled back if
necessary.
Avoid cloud vendor lock-in: Different cloud providers use different deployment
methods and different formats. This framework helps put the application into a
single package, and this package can be deployed to any cloud providers.
Infrastructure as Code (IaC): Across multiple clouds, you can configure the
infrastructure. The Serverless Framework will integrate with every compute
service to provide you with a standardized infrastructure as code.
Existing ecosystem: These Serverless Framework is pluggable, so you can used it
with any existing system. There are many community contributed plugins
available on GitHub. This framework is widely adopted so you can participate in
active discussion on forums. There is a wide range of available tutorials that can
help you get started.

Many developers are moving to serverless to decrease monotony and increase velocity for
the application.

Now, we will discuss some serverless use cases to encourage you to think beyond it.
Serverless is extensible, flexible, and used to address a wide range of application problems:

Auto-scaling websites and APIs: In serverless, you can develop websites and
applications without setting up any infrastructure. You can launch a fully
functional sites in days. Your serverless backend scales automatically on demand.
Event streaming: Serverless compute will trigger from event logs and pub/sub
topics to give you a scalable and elastic pipeline without maintaining the
complicated clusters. With an event streaming pipeline, you can power the
analytics system, modify the cache, update the secondary data stores, or feed the
monitoring system.

Amazon Lambda – AWS Serverless Architecture Chapter 10

[361]

Image and video manipulation: Serverless allows you to build a performance-
enhancing image and video service for an application. You can call the serverless
service to dynamically resize an image and change the trans coding of the video
for different languages. The application will use image recognition to improve a
user's experience, such as an ecommerce website that allows customers to upload
their credit card photograph instead of typing the credit card number in
manually. You can also user Amazon Rekognition to recognize images and faces
for profile photos. You can also reformat or automatically process the uploaded
images or resize them into thumbnails in specific dimensions.
Hybrid-cloud applications: Every cloud provider has some limitations, and they
will not meet each and every business requirement on their own. Teams need to
utilize the best feature from cloud vendors and acquire them to deploy services
for multiple providers within a single application. But this is not easy for cloud
providers. Serverless helps to achieve this by tweaking the functions to fit cloud
vendors' unique formats. You can easily deploy to any vendor you choose to
maximize application efficiency and utilize the best part from each cloud vendor.
Multi-language applications: With the Serverless Framework, your application
can be multi-lingual. When building an application, the first discussion is usually
about which language to use. The language chosen isn't always about what suits
the project best, but rather which resources are already on-hand. This encourages
multilingual teams and enables seamless integration of services in applications
written by a specific team. It prevents a team to use the specific language, and the
new language can used for new services. These new services can talk to legacy
services as necessary.
CI/CD: The ability to quickly revise software is far more important nowadays.
With Continuous Integration and Continuous Deployment, you can ship your
code in small iterations to fix bugs and other updates on a daily basis. Serverless
can automate these processes. As an example, checking code in to the repository
will trigger for website builds, and if the builds is successful, it will redeploy it
automatically. With Serverless, you can automate processes and cut down
manual tasks.

So far, we have talked about the serverless application framework. In the next section, we
will understand monitoring and optimizing the cost of the infrastructure.

Amazon Lambda – AWS Serverless Architecture Chapter 10

[362]

Monitoring and optimizing the cost of the
infrastructure
In the early stages, if you do not estimate and optimize Lambda costs, then your Lambda
functions can cost thousands of dollars unnecessarily. You can save this money with pre-
planning and cost optimizations.

The cost of AWS Lambda is cheaper when you have a low volume, but when you start
executing it on a production scale, then you can't ignore it.

How does Lambda pricing work?
AWS Lambda is a pay-as-you-go service in cloud computing. You can upload the function,
execute it, and pay for the execution time. If you don't execute the function or it is idle, then
you don't pay anything.

The following factors can determine the cost of AWS Lambda:

You will pay for the number of times the Lambda function executes.
It depends on the duration of each Lambda function execution. You will pay
more if your function takes a long time to execute. This will encourage you to
write efficient application code. The maximum timeout for a Lambda function is
5 minutes, and you will be charged in 100 ms increments.
You have to configure the required memory for the successful execution of the
Lambda function. You should avoid under-allocation or over-allocation of
memory.
You will pay standard EC2 rates for data transfer.

Amazon Lambda – AWS Serverless Architecture Chapter 10

[363]

How do you keep AWS Lambda costs down?
Uses and configurations are combinations that can be problematic for some budgets. The
following are some ways to keep your AWS Lambda costs down:

Your functions should be executed at the right frequency: You have to identify
which factor can affect how frequently your Lambda functions need to trigger.
Let's say you are using Kinesis as a Lambda function trigger; you can simply
adjust the batch size. If the batch size is higher, then your Lambda function will
execute less frequently. You have to check your triggers and see if you can reduce
the number of executions.

Write efficient code that executes fast: If your function completes the execution
in half of the time, then it will save you half of your money. Execution time is
directly proportional to how much you will pay. You could check the
CloudWatch logs for duration metrics. If the function is taking more time to
execute, then you should optimize it.

Provision the right amount of memory: If the function is configured with 512 MB
and it is using 15 MB for execution, then it is wasting around 97% of its capacity.
If the function is executed 100 times per second, then it will cost you
approximately $1,780 USD monthly. But if you reduce the memory size from 512
MB to 128 MB, then it will not affect your execution time. You will see
approximately $480 USD in your monthly bill. This means that you will save
around $1,300 USD every month and $15,600 USD at the end of the year. Higher
memory allocation results in more CPU capacity allocation, which could result in
faster execution with a lower cost. It is recommended that you test the function at
scale with different memory allocation, check the execution time, and calculate
the cost.

Keep an eye on data transfer: When you execute a Lambda function, it will
charge you at standard EC2 data transfer rates. You can do the following things
when it concerns data transfer:

You can verify the AWS cost and usage report. Filter it by your
Lambda function and find the values in the transferType
column; you will get the usage amount.
You can log the data transfer operation size in Lambda code and
configure it for the CloudWatch Metric filter.

Amazon Lambda – AWS Serverless Architecture Chapter 10

[364]

So far, we have talked about monitoring and optimizing the cost of the infrastructure. In the
next section, we will understand the CI/CD workflow using AWS CloudFormation.

CI and CD workflow
In this section, we will create an end-to-end CI and CD pipeline using AWS CodePipeline
and AWS CloudFormation.

Before you start,you must have a few resources available to create a CD pipeline. We have
covered most of these resources in the previous chapters.

You should create all the required resources within the same AWS region.

The prerequisites are as follows:

AWS CodeBuild: You can use AWS CodeBuild to build, test, and package your
serverless application
AWS CloudFormation: You can use AWS CloudFormation to deploy your
serverless application
AWS CodeDeploy: You can use AWS CodeDeploy to deploy updates on your
serverless application
AWS CodePipeline: You can use AWS CodePipeline to model, visualize, and
automate the steps required for the serverless application

The following section will describe how to integrate all these tools from AWS CodePipeline
to automate the deployment of serverless applications. You have to create an AWS
CloudFormation role and attach the AWSLambdaExecute policy:

Log in to AWS and open the IAM console from: https:/ ​/​console. ​aws. ​amazon.1.
com/​iam/ ​.
Create an IAM role for the AWS CloudFormation service.2.

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Lambda – AWS Serverless Architecture Chapter 10

[365]

Proceed with the following steps to create a role:3.
In Select Role Type, select the AWS Service Roles option, and then1.
select CloudFormation. Select Next: Permissions.
In attach permissions policies, in the search bar, find and select2.
AWSLambdaExecute. Select Next: Review.
In the role name, uses unique name and then select Create role.3.
Open the created role and select Add inline policy under4.
the Permissions tab.
In Create Policy, select the JSON tab and add the following code:5.

 Replace the ID and region with your corresponding account ID and
region.

{
 "Statement": [
 {
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:GetBucketVersioning"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": [
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::codepipeline*"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "lambda:*"
],
 "Resource": [
 "arn:aws:lambda:region:id:function:*"
],
 "Effect": "Allow"
 },

Amazon Lambda – AWS Serverless Architecture Chapter 10

[366]

 {
 "Action": [
 "apigateway:*"
],
 "Resource": [
 "arn:aws:apigateway:region::*"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "iam:GetRole",
 "iam:CreateRole",
 "iam:DeleteRole",
 "iam:PutRolePolicy"
],
 "Resource": [
 "arn:aws:iam::id:role/*"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "iam:AttachRolePolicy",
 "iam:DeleteRolePolicy",
 "iam:DetachRolePolicy"
],
 "Resource": [
 "arn:aws:iam::id:role/*"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "*"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "cloudformation:CreateChangeSet"
],
 "Resource": [
"arn:aws:cloudformation:region:aws:transform/Serverless-2016-10-31"
],

Amazon Lambda – AWS Serverless Architecture Chapter 10

[367]

 "Effect": "Allow"
 },
 {
 "Action": [
 "codedeploy:CreateApplication",
 "codedeploy:DeleteApplication",
 "codedeploy:RegisterApplicationRevision"
],
 "Resource": [
 "arn:aws:codedeploy:region:id:application:*"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "codedeploy:CreateDeploymentGroup",
 "codedeploy:CreateDeployment",
 "codedeploy:GetDeployment"
],
 "Resource": [
 "arn:aws:codedeploy:region:id:deploymentgroup:*"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "codedeploy:GetDeploymentConfig"
],
 "Resource": [
 "arn:aws:codedeploy:region:id:deploymentconfig:*"
],
 "Effect": "Allow"
 }
],
 "Version": "2012-10-17"
}

Select Validate Policy and then select Apply Policy.6.

Amazon Lambda – AWS Serverless Architecture Chapter 10

[368]

Step 1 – setting up the repository
In the following example, we will use Node.js to create a few files. To set up your
repository, do the following:

Create the index.js file with the following code:1.

var time = require('time');
exports.handler = (event, context, callback) => {
 var currentTime = new time.Date();
 currentTime.setTimezone("America/New_York");
 callback(null, {
 statusCode: '200',
 body: 'Time in New York : ' + currentTime.toString(),
 });
};

Create the packt.yaml file with the following code. This is a SAM template file2.
to define the resources. It will define a Lambda function which will be triggered
by the API gateway:

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: Outputs the time
Resources:
 PacktStack:
 Type: AWS::Serverless::Function
 Properties:
 Handler: index.handler
 Runtime: nodejs6.10
 CodeUri: s3://codepipeline-us-east-1-514478780013/.
 Events:
 PacktCICDApi:
 Type: Api
 Properties:
 Path: /PacktCICDResource
 Method: GET

Create the buildspec.yml file with the following code. This file is in YAML3.
format, and it contains the build commands and related settings. AWS CodeBuild
will use this file to run the build.
 In the following example:4.

It will install npm with the time package
Execute the package command for the deployment package

Amazon Lambda – AWS Serverless Architecture Chapter 10

[369]

It will also change the --s3-bucket parameter value with your
Amazon S3 bucket:

version: 0.1
phases:
 install:
 commands:
 - npm install time
 - aws cloudformation package --template-file packt.yaml
--s3-bucket codepipeline-us-east-1-514478780013 --output-
template-file OutputPackt.yaml
 - aws cloudformation deploy --template-file
OutputPackt.yaml --stack-name PacktStack --capabilities
CAPABILITY_IAM

artifacts:
 type: zip
 files:
 - packt.yaml

Step 2 – creating the pipeline
Proceed with the following steps to create the AWS CodePipeline:

Log in to AWS and navigate to the AWS CodePipeline console at: https:/ ​/1.
console. ​aws. ​amazon. ​com/ ​codepipeline/ ​.
Click on the Create pipeline button, add the pipeline name for your pipeline, and2.
click on the Next step button:

https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/
https://console.aws.amazon.com/codepipeline/

Amazon Lambda – AWS Serverless Architecture Chapter 10

[370]

In the Source provider dropdown, select the AWS CodeCommit option.3.
Select the repository name and branch name to connect to every push to the4.
branch you selected. Click on the Next step button:

Select the AWS CodeBuild option as the build provider.5.
Click on the Create a new build project option and enter the project name.6.
Select Ubuntu as the operating system and Node.js as the runtime.7.
In the Version option, select aws/codebuild/nodejs: version.8.
In the Build specification, select the Use the buildspec.yml in the source code9.
root directory option.

Amazon Lambda – AWS Serverless Architecture Chapter 10

[371]

Select Save build project.10.

It will automatically create a service role for AWS CodeBuild.

Select the Next step button:11.

Amazon Lambda – AWS Serverless Architecture Chapter 10

[372]

In the Deployment provider dropdown, select the AWS CloudFormation option.12.
AWS CloudFormation commands will deploy the SAM template.
In the Action mode dropdown, select the Create or replace a change set option.13.
In Stack name, add PacktStack.14.
In Change set name, add PacktStackChanged.15.
In the Template file, add packt.yaml.16.
In Capabilities, select CAPABILITY_IAM.17.
In Role name, select the role for AWS CloudFormation that you created at the18.
beginning of this section, and then click on the Next step button:

Amazon Lambda – AWS Serverless Architecture Chapter 10

[373]

Select create role. Select Next and then select Allow. Click on the Next step19.
button.
Review the pipeline and select Create pipeline.20.

Step 3 – modifying the generated policy
Proceed with the following steps to allow CodeBuild to upload build artifacts to your
Amazon S3 bucket:

Log in to AWS and open IAM console from https:/ ​/​console. ​aws. ​amazon. ​com/1.
iam/​.
Select Roles and open the role that was generated for that project. Typically, it2.
should look like code-build-project-name-service-role.
Under the Permissions tab, select Add inline policy.3.
In service, select Choose a service.4.
In Select a service, choose S3.5.
In Actions, select actions.6.
Under Access level groups, expand write, and then select PutObject.7.
Select Resources and select any checkbox.8.
Select Review policy.9.
Add the name and then select Create policy.10.

Step 4 – completing your deployment stage
Proceed with the following steps to complete the stage:

Select the Edit button and select the edit icon next to PacktStack.1.
In the action category, select Deploy if not selected.2.
In Deployment provider, select AWS CloudFormation if not selected.3.
In Action mode, select Execute a change set.4.
In Stack name, add or select PacktStack.5.
In Change set name, add PacktStackChange.6.
Select Add action and then select Save pipeline changes.7.
Select Save and continue.8.

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Lambda – AWS Serverless Architecture Chapter 10

[374]

Now, your pipeline is ready. Any code commits or pushes to the branch you connected to
this pipeline will trigger a deployment. You can test your pipeline and deploy the
application for the first time, then do any of the following:

Perform a code commit to your Git branch connected to the pipeline1.
Go to the AWS CodePipeline console and select the name of the pipeline you2.
created, and then click on the Release change button:

Amazon Lambda – AWS Serverless Architecture Chapter 10

[375]

Summary
We have looked at microservices architecture, AWS Lambda, SAM, the serverless
application framework, continuous integration, and continuous workflow.

I hope you have enjoyed this, and gained much more knowledge than expected after
reading this book. All the best and happy coding!

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Mastering AWS Security
Albert Anthony

ISBN: 978-1-78829-372-3

Learn about AWS Identity Management and Access control
Gain knowledge to create and secure your private network in AWS
Understand and secure your infrastructure in AWS
Understand monitoring, logging and auditing in AWS
Ensure Data Security in AWS
Learn to secure your applications in AWS
Explore AWS Security best practices

https://www.packtpub.com/virtualization-and-cloud/mastering-aws-security

Other Books You May Enjoy

[377]

Learning AWS - Second Edition
Aurobindo Sarkar, Amit Shah

ISBN: 978-1-78728-106-6

Set up your AWS account and get started with the basic concepts of AWS
Learn about AWS terminology and identity access management
Acquaint yourself with important elements of the cloud with features such as
computing, ELB, and VPC
Back up your database and ensure high availability by having an understanding
of database-related services in the AWS cloud
Integrate AWS services with your application to meet and exceed non-functional
requirements
Create and automate infrastructure to design cost-effective, highly available
applications

https://www.packtpub.com/virtualization-and-cloud/learning-aws-second-edition

Other Books You May Enjoy

[378]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
Access Control List (ACL) 250
always-on model 62
Amazon Cognito Federated Identities
 about 204
 Pool, creating from console 205
Amazon Cognito User Pools
 about 193
 creating, from console 193, 195
 example, for Android with mobile SDK 197, 200
 using 193
Amazon Cognito
 about 208, 210, 213
 benefits 192
 features 193
 used, to set AWS credentials 35, 38, 40, 41, 43
Amazon DynamoDB Accelerator (DAX) 46
Amazon DynamoDB
 about 46
 document interface 49
 integrating, into application 47
 low-level API 52
 low-level interface 48
 object persistence (high-level) interface 51
 troubleshooting 52
Amazon EC2 Container Registry (Amazon ECR)

119

Amazon EC2 Container Service (Amazon ECS)
 about 234
 benefits 235, 236, 326
 Docker with 232
Amazon EC2 instance 225, 226, 227, 230
Amazon EC2 service
 use cases 240, 242
Amazon ECS clusters
 about 302

 concepts 302
 creating 303, 305
 deleting 307
 reference 303
 scaling 306
Amazon Elastic Block Store (Amazon EBS) 226,

269

Amazon Elastic Compute Cloud (Amazon EC2)
 about 225
 benefits 230, 231
 best practices 248, 249
 dedicated hosts 226
 drawbacks 230, 231
 on-demand instances 226
 reserved instances 226
 spot instances 226
Amazon Elastic Container Registry (Amazon ECR)

291

Amazon Kinesis Firehose
 about 53, 57
 troubleshooting 59
Amazon Kinesis streams
 about 54
 troubleshooting 55
Amazon Lambda
 use cases 244
Amazon Machine Image (AMI) 248, 276
Amazon Resource Name (ARN) 347
Amazon S3
 application file, bundling 154, 155
 application file, preparing 154, 155
 bucket provisioning, with IAM user permission

153

 bucket, pushing 154, 155
 upload application 153
Amazon Simple Notification Service (Amazon

SNS) 273

[380]

Amazon Simple Storage Service (Amazon S3) 62,
269

Amazon SQS
 about 60
 benefits 61
 features 61
 FIFO queue 61
 integration 62
 operational efficiency 61
 productivity 62
 reliability 61
 scalability 62
 security 62
 standard queue 60
 troubleshooting 64
Amazon SWF
 about 65
 AWS SDK, for Java using Apache Maven 68
 non-deterministic workflows 79
 project, building 77
 project, executing 77
 tasks, loosing 79
 troubleshooting 78
 unknown resource fault 78
 versioning issues 79
 workflow execution, debugging 79
 workflow execution, troubleshooting 79
Amazon Web Services (AWS)
 about 7, 101
 benefits 220, 221, 222, 223
 overview, for DevOps 105
 solution, for common web hosting 220, 221,

222, 223
Another Neat Tool (ANT) 98
Application Load Balancer (ALB)
 about 264
 benefits 264
Application Performance Management (APM) 101
Application Programming Interface (API) 193
application
 deploying 155
 deploying, from AWS CLI 156, 157
 deploying, from AWS Management Console 158,

159, 160, 161, 163, 164, 165
 monitoring, from AWS CLI 156, 157

 monitoring, from AWS Management Console
158, 159, 160, 161, 163, 164, 165

auto scaling 263, 267, 268
Auto Scaling Groups (ASGs) 267
Availability Zone (AZ) 183, 305
AWS CloudFormation
 about 354
 prerequisites 364
AWS CodeBuild
 about 118
 benefits 118
 creating, AWS Management Console used 121,

123, 125, 127, 128, 130, 131, 133
 features 119
 list of build project names 136
 updates build project's detail 138
 view build project's details 137
AWS CodeCommit
 about 106, 110, 112, 113, 115, 117
 benefits 107
 development tools, Git credentials used 109
 features 107
 Git credentials, setting up for HTTPS users 109
 IDE, connections 109
 prerequisites 108
 setting up, Git credentials used 109
 setting up, other methods used 109
AWS CodeDeploy
 about 141
 adopting 143, 144
 automatic deployment 141, 142
 benefits 141
 compute platforms 144
 control centrally 143
 deployment options 144
 minimize downtime 142, 143
 sample application deployment, on Windows

Server 145, 147, 148, 150, 151, 152, 153,
155

AWS CodePipeline
 about 165
 benefits 165
 create-pipeline command, executing 175
 creating, from AWS CLI 174, 175
 creating, from console 167, 168, 169, 170, 171,

[381]

173, 174
 features 166, 167
 JSON file, creating 175
 reference link 330
AWS CodeStar
 about 176
 project, creating 177, 178, 179, 181
AWS Command Line Interface
 URL, for downloading 132
AWS Lambda functions
 alarming 350
 async invokes 350
 best practices 348
 function code 348
 function configuration 349
 Lambda VPC 350
 metrics 350
 stream event invokes 350
AWS Lambda
 benefits 238, 239
 best practices 340
 cost, monitoring 362
 cost, optimizing 362
 Dead letter queues (DLQ) 347
 drawbacks 239, 240
 environment variables 341
 methods, for keeping costs down 363
 price, working 362
 topics 340
AWS Lambda@Edge
 about 352
 benefits 352
 best practices 340
 topics 340
AWS Mobile SDK
 configuring, for Android 34
 configuring, Gradle used 35
 configuring, Maven used 34
 for Android 31
 JAR files, importing 35
 reference link 32
 services 31
 setting up, for Android 33
AWS SAM
 about 353

 deploying 354, 356
 packaging 354
AWS SDks, source code
 reference link 27
AWS SDKs
 about 8
 Apache Maven 11
 configuring, as Maven dependency 13, 14, 16
 Eclipse IDE 11
 environment, setting up 10
 for IoT devices 30
 for Java 9
 for Java, Apache Maven used 68
 for Java, using Apache Maven 12
 for Java, using Eclipse IDE 19, 21, 22, 24, 26
 for Java, using Gradle 17, 18
 for mobile devices 31
 for Node.js 27, 29
 Gradle 11
 installing, from GitHub 27
 installing, from Node.js Package Manager (npm)

27

 sample code, executing 10
 workflow implementations 69, 71, 72, 75, 76
AWS SWF
 APIs 66
 audio decoding 66
 audio encoding 66
 AWS Flow Framework 67
 components 67
 examples 67
 order processing system 66
 video decoding 66
 video encoding 66
AWS tools 8
AWS Well-Architected framework
 about 224, 225
 cost optimization 224
 operational excellence 224
 performance efficiency 224
 reliability 224
 security 224
AWS X-Ray
 about 183
 benefits 183

[382]

 example, creating from console 184, 185, 186,
187, 188, 189

 features 184

B
behavior-driven development (BDD) 99
Bill of Materials (BOM) 11
Build Automation tool
 about 97
 Ant 98
 Gradle 98
 Maven 98

C
Classic Load Balancer (CLB)
 about 264, 266
 benefits 266
cloud hosting 218, 219
command line 8
Command Line Interface (CLI) 193
Community Edition (CE) 215, 233
Configuration Management
 about 100
 Ansible 101
 Chef 101
 Puppet 101
container instances
 about 295
 account instance role, checking 297
 Amazon ECS container instance, launching 297
 AMIs 297
 bootstrapping, with Amazon EC2 user data 298
 concepts 295
 connecting 299
 deregistering 301
 draining 300
 lifecycle 296
 remotely managing 301
 update notification, subscribing to Amazon

ECS–optimized AMI 297
 using, with CloudWatch Logs 299
containers 234
Content Delivery Network (CDN) 273
Continuous Delivery (CD)

 about 81, 90, 91
 benefits 93
Continuous Deployment (CD)
 about 81, 93, 327
 benefits 95
 on AWS 103
 working 94
Continuous Integration (CI)
 about 81, 86, 87, 100, 327
 Bamboo 100
 best practices 88
 Hudson 100
 Jenkins 100
 on AWS 103
Continuous Monitoring
 about 101
 Ganglia 102
 Nagios 102
 Sensu 102
Create, Read, Update, and Delete (CRUD) 49
Customer Master Key (CMK) 128

D
Dead Letter Queue (DLQ) 350
Deployment Pipeline
 Build Automation 92
 Continuous Integration 92
 Deployment Automation 92
 Test Automation 92
developer tools 8
Development and Operations (DevOps)
 about 81
 benefits 84, 86
 goal 83
 integrating 83
 overview 82
development tools, Git credentials
 URL 109
DevOps processes
 Build Automation tool 97
 Configuration Management 100
 Continuous Integration (CI) 100
 Continuous Monitoring 101
 Source Code Management 96
 Test Automation 99

[383]

 tools, used 96
 Virtual Infrastructure 102
Directed Acyclic Graph (DAG) 98
Distributed Denial-of-Service (DDoS) 241
Docker
 about 286, 287, 289, 290, 291, 294
 use case 233
 with Amazon EC2 Container Service (Amazon

ECS) 232
document interface 49
Domain-Specific Language (DSL) 98, 101

E
EC2 Container Service
 cost, controlling 244, 245
 cost, optimizing 244, 245, 246
ECS infrastructure
 cost efficient resources 271
 cost, monitoring 269, 326
 cost, optimizing 269, 273, 326
 design principles 270
 expenses 272, 273
 supply-demand matching 272
Elastic Container Service (ECS) 166, 183, 215,

297

Elastic Load Balancing (ELB)
 about 225, 227, 230, 231, 263, 337
 application load balancer 232
 Application Load Balancer (ALB), benefits 264,

265

 benefits 232
 classic load balancer 232
 Classic Load Balancer (CLB), benefits 266
 features 231, 264
 network load balancer 232
 Network Load Balancer (NLB), benefits 265
Elastic Network Interface (ENI) 351
end-to-end CI and CD pipeline, Amazon ECS used
 about 327
 Amazon ECR permissions, adding to AWS

CodeBuild role 334
 Continuous Deployment pipeline, creating 330
 prerequisites 327
 required files source repository, adding 328
 testing 334

end-to-end CI and CD pipeline, auto scaling
configuration 274, 276, 277, 280, 285

end-to-end CI and CD pipeline, AWS
CloudFormation used

 about 364
 deployment stage, completing 373
 generated policy, modifying 373
 pipeline, creating 369
 repository, setting up 368
end-to-end CI and CD pipeline, load balancing

configuration 274, 276, 277, 280, 285
Enterprise Edition (EE) 215, 233
environment variables
 about 341
 encryption 345
 error scenarios 347
 function versioning 344
 naming convention rules 344
 setting up 341
Extract-Transform-Load (ETL) 234

F
fault tolerance
 about 263, 267, 268
 in AWS for Amazon EC2 268
Function-as-a-Service (FaaS) 237, 358

H
HTTPS users, Git credentials
 URL 109
HyperText Transfer Protocol (HTTP) 265

I
IDE toolkits 8
Identity and Access Management (IAM) 105, 107,

176

instance
 booting, from volume 259
 capacity, troubleshooting 258
 console output, obtaining 259
 error, connecting 251
 errors, connecting 250
 rebooting 259
 recovery failures, troubleshooting 253

[384]

 terminating 249
 troubleshooting 249
 troubleshooting, stopping 252
 troubleshooting, terminating 252
 troubleshooting, with failed status checks 253,

254, 255, 256, 257, 258
 Windows instance, troubleshooting 259, 261,

262, 263
Integrated Development Environment (IDE) 176
Internet Information service (IIS) 145

J
Java Archive (JAR) 14
Java Development Kit (JDK) 7
JavaScript Object Notation (JSON) 52

K
Key Management Service (KMS) 62, 345

L
low-level interface 48

M
Master–Agent model 101
message-oriented middleware (MoM) 61
microservices
 advantages 339
 architecture 338
 characteristics 339
 disadvantages 340

N
Network Address Translation (NAT) 295
Network Load Balancer (NLB)
 about 264, 265
 benefits 265
Node.js
 URL, for downloading 27
 URL, for installing 27

O
object persistence (high-level) interface 51

P
Plain Old Java Objects (POJOs) 9
Platform as a Service (PaaS) 102
project flourish 353

R
Return on Investment (ROI) 214

S
SDKs 8
Secure Sockets Layer (SSL) 231
Security Assertion Markup Language (SAML) 167
Server Name Indication (SNI) 264
server-side encryption (SSE) 62
Serverless Application Framework
 about 358, 359
 benefits 360
 serverless application 358
 serverless application, benefits 359
 use cases 360
Serverless Application Model (SAM) 8, 237, 337,

352

serverless application
 about 358
 benefits 359
serverless architecture
 with Lambda 237, 238
serverless development 8
shared hosting
 drawbacks 216
Simple Notification Service (SNS) 62, 108
Simple Queue Service (SQS) 45
Simple Workflow Service (SWF) 45, 65
Software Development Life Cycle (SDLC) 82
Source Code Management
 about 96
 Bitbucket 97
 GIT 97
 Subversion (SVN) 97
Subversion (SVN) 96
supply-demand matching
 buffer-based 272
 demand-based 272
 time-based 272

T
tasks
 custom schedulers 317
 executing, on cron-like schedule 315
 life cycle 317
 manual execution 309, 313
 retirement 318
 scheduling 309
 service scheduler, using 309
 Windows containers (beta) 318
Test Automation
 about 99
 Cucumber 99
 JUnit 99
 Selenium 99
Test-Driven Development (TDD) 99
traditional web hosting
 about 216
 challenges 216, 217
 versus web hosting, on cloud AWS used 215

V
Virtual Infrastructure 102
Virtual Private Cloud (VPC) 236, 250, 264, 350

W
Web Application Firewall (WAF) 241
web hosting
 versus traditional web hosting, on cloud using

AWS 215
What You Pay is What You Use (WYPWYU) 105,

120

Windows container
 concepts 319
 instance, launching into cluster 321
 service, creating with task definition 324
 service, viewing 325
 task definition, registering 323
 web application, using with 319
 Windows cluster, creating 320

	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: AWS Tools and SDKs
	Brief introduction to AWS tools and SDKs
	AWS SDK for Java
	AWS SDK for Java using Apache Maven
	Configuring an SDK as a Maven dependency

	AWS SDK for Java using Gradle
	AWS SDK for Java using Eclipse IDE

	AWS SDK for Node.js

	AWS SDKs for IoT devices
	AWS SDKs for mobile devices
	AWS Mobile SDK for Android
	AWS Mobile SDK setup for Android
	Configuring AWS Mobile SDK for Android

	Using Amazon Cognito to set AWS credentials

	Summary

	Chapter 2: Integrating Applications with AWS Services
	Amazon DynamoDB
	Integrating DynamoDB into an application
	Low-level interface
	Document interface
	Object persistence (high-level) interface

	DynamoDB low-level API
	Troubleshooting in Amazon DynamoDB

	Amazon Kinesis
	Amazon Kinesis streams
	Troubleshooting tips for Kinesis streams

	Amazon Kinesis Firehose
	Troubleshooting tips for Kinesis Firehose

	Amazon SQS
	Benefits and features of Amazon SQS
	Troubleshooting in Amazon SQS
	Amazon SWF
	AWS SWF components
	Amazon SWF examples
	AWS SDK for Java using Apache Maven
	Workflow implementations
	Building and running a project

	Troubleshooting Amazon SWF
	Unknown resource fault
	Non-deterministic workflows
	Versioning problems
	Troubleshooting and debugging a workflow execution
	Lost tasks

	Summary

	Chapter 3: Continuous Integration and Continuous Deployment Workflow
	An overview of DevOps
	The goal of DevOps
	Reasons for integrating DevOps in your process
	The benefits of DevOps

	Continuous Integration – maintaining code repository
	Continuous Integration best practices

	Continuous Delivery – automating build and self-testing
	Continuous Delivery benefits

	Continuous Deployment – automating production deployment
	How they work together
	The benefits of Continuous Deployment

	Tools used for DevOps processes
	Source Code Management
	GIT
	Bitbucket
	Subversion (SVN)

	Build Automation tool
	Maven
	Ant
	Gradle

	Test automation
	Selenium
	JUnit
	Cucumber

	Continuous Integration
	Jenkins
	Bamboo
	Hudson

	Configuration Management
	Puppet
	Chef
	Ansible

	Continuous Monitoring
	Nagios
	Ganglia
	Sensu

	Virtual Infrastructure

	CI/CD on AWS
	Summary

	Chapter 4: CI/CD in AWS Part 1 – CodeCommit, CodeBuild, and Testing
	A brief overview of AWS for DevOps
	AWS CodeCommit – maintaining code repository
	Prerequisites of AWS CodeCommit
	AWS CodeCommit setup using Git credentials
	AWS CodeCommit setup using other methods

	Getting started with AWS CodeCommit

	AWS CodeBuild – automating the build
	AWS CodeBuild benefits
	AWS CodeBuild features
	Creating AWS CodeBuild project using AWS Management Console
	List of build project names
	Viewing the build project's details
	Updating the build project's details
	Deleting the build project

	Summary

	Chapter 5: CI/CD in AWS Part 2 – CodeDeploy, CodePipeline, and CodeStar
	AWS CodeDeploy
	AWS CodeDeploy benefits
	Compute platforms and deployment options for AWS CodeDeploy
	Compute platforms
	Deployment options

	AWS CodeDeploy – sample application deployment on a Windows Server
	Step 1 – prerequisite configurations for AWS CodeDeploy
	Step 2 – launch a Windows Server Amazon EC2 instance
	Step 3 – configure source content to deploy to the EC2 instance
	Step 4 – upload application to Amazon S3
	Provision of S3 bucket with IAM user permission
	Preparation and bundling of the application's file and pushing to the S3 bucket

	Step 5 – deploy application
	To deploy and monitor the application from AWS CLI
	To deploy and monitor the application from AWS Management Console

	Step 6 – update and redeploy application
	Step 7 – clean up the application and related resources

	AWS CodePipeline
	AWS CodePipeline benefits
	AWS CodePipeline features
	Creating an AWS CodePipeline from the console
	Creating an AWS CodePipeline from AWS CLI
	JSON file creation
	Execution of the create-pipeline command

	AWS CodeStar
	Creating a project in AWS CodeStar

	AWS X-Ray
	AWS X-Ray benefits
	Key features of AWS X-Ray
	Creating an AWS X-Ray example from the console

	Summary

	Chapter 6: User Authentication with AWS Cognito
	Amazon Cognito benefits
	Amazon Cognito features
	Amazon Cognito User Pools
	Getting started with Amazon Cognito User Pools
	Amazon Cognito User Pool creation from the console
	Amazon Cognito example for Android with mobile SDK

	Amazon Cognito Federated Identities
	Creating a new Identity Pool from the console

	Amazon Cognito Sync

	Summary

	Chapter 7: Evaluating the Best Architecture
	The comparison of traditional web hosting versus web hosting on the cloud using AWS
	Traditional web hosting
	Challenges with traditional hosting

	Cloud hosting
	The AWS solution for common web hosting

	AWS Well-Architected framework
	Amazon EC2 instance and Elastic Load Balancer
	Benefits and drawbacks of Amazon EC2

	Elastic Load Balancing
	Docker with the Amazon EC2 Container Service (Amazon ECS)
	Use case of Docker

	Containers
	Amazon ECS
	Serverless architecture with Lambda
	Use cases for different architectures
	Controlling and optimizing costs
	Summary

	Chapter 8: Traditional Web Hosting – Amazon EC2 and Elastic Load Balancing
	Amazon EC2 best practices
	Troubleshooting instances
	Instance terminates immediately
	Errors when connected to an instance
	Troubleshooting stopping your instance
	Troubleshooting terminating (shutting down) your instance
	Troubleshooting instance recovery failures
	Troubleshooting instances with failed status checks
	Troubleshooting instance capacity
	Getting console output and rebooting instances
	My instance is booting from the wrong volume
	Troubleshooting Windows instances

	Elastic Load Balancing, auto scaling, and fault tolerant
	Features of ELB
	Benefits of Application Load Balancer
	Benefits of Network Load Balancer
	Benefits of Classic Load Balancer
	Auto scaling and fault tolerance
	Fault tolerance in AWS for Amazon EC2

	Monitoring and optimizing the cost of the EC2 infrastructure
	Cost efficient resources
	Supply-demand matching
	Know your expenses
	Optimization over time

	Continuous Integration and Continuous Deployment workflow
	Summary

	Chapter 9: Amazon EC2 Container Service
	Docker
	Container instances
	Basic concepts of a container instance
	Life cycle of a container instance
	Checking the instance role for the account
	AMIs for a container instance
	Update notification subscribing to Amazon ECS–optimized AMI
	Launching an Amazon ECS container instance
	Bootstrapping container instances with Amazon EC2 user data
	Connecting your container instance
	Container instances with CloudWatch Logs
	Container instance draining
	Remotely managing your container instance
	Deregistering your container instance

	Amazon ECS clusters
	Cluster concepts
	Creating a cluster
	Scaling a cluster
	Deleting a cluster

	Scheduling tasks
	Service scheduler
	Manually running tasks
	Running tasks on a cron-like schedule
	Custom schedulers
	Task life cycle
	Task retirement
	Windows containers (beta)
	Windows container concepts
	A web application with Windows containers
	Create a Windows cluster
	Launch a Windows container instance into the cluster
	Register a task definition for Windows
	Create a service with the task definition
	View the service

	Monitoring and optimizing the cost of the infrastructure
	Continuous Integration (CI) and Continuous Deployment (CD) Workflow
	Step 1 – addding required files source repository
	Step 2 – creating a Continuous Deployment pipeline
	Step 3 – adding Amazon ECR permissions to the AWS CodeBuild role
	Step 4 – testing your pipeline

	Summary

	Chapter 10: Amazon Lambda – AWS Serverless Architecture
	Microservices architecture
	Microservice characteristics

	Lambda and Lambda@Edge advanced topics and best practices
	Environment variables
	Setting up
	Naming convention rules for environment variables
	Environment variables and function versioning
	Environment variable encryption
	Error scenarios

	Dead letter queues (DLQ)

	Best practices for working with AWS Lambda functions
	Function code
	Function configuration
	Alarming and metrics
	Stream event invokes
	Async invokes
	Lambda VPC

	Lambda@Edge
	Lambda@Edge benefits

	AWS Serverless Application Model (SAM)
	Deploying with AWS SAM and AWS CloudFormation
	Packaging and deployment
	Packaging
	Deployment

	Introducing the Serverless Application Framework
	What makes an application serverless?
	Serverless applications benefits
	The Serverless Framework
	Serverless Framework benefits

	Monitoring and optimizing the cost of the infrastructure
	How does Lambda pricing work?
	How do you keep AWS Lambda costs down?

	CI and CD workflow
	Step 1 – setting up the repository
	Step 2 – creating the pipeline
	Step 3 – modifying the generated policy
	Step 4 – completing your deployment stage

	Summary

	Other Books You May Enjoy
	Index

